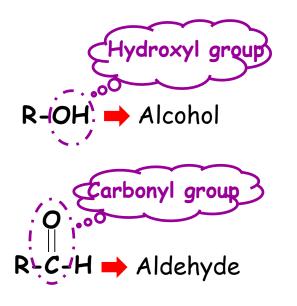
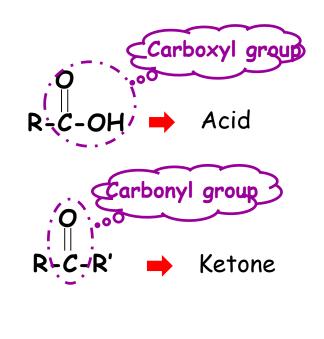


الجمهورية الجزائرية الديمقر اطية الشعيبة

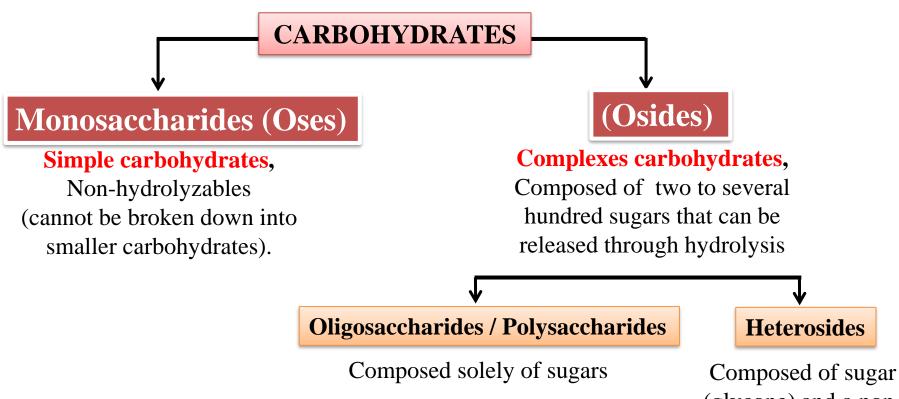
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

جامعة باجي مختار - عنابة BADJI MOKHTAR UNIVERSITY - ANNABA كلية العلوم FACULTY OF SCIENCES قسم البيوكيمياء DEPARTMENT OF BIOCHEMISTRY


Stuctural and Metabolic Biochemistry


TCSNV 2nd

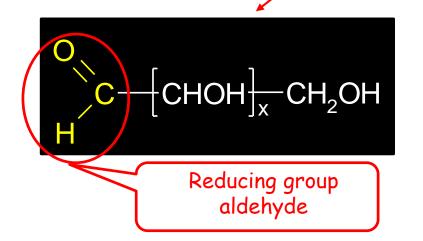
Fondamental unit 53

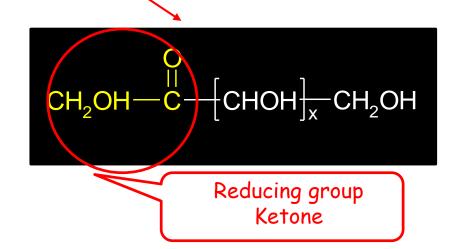

SUGARS / CARBOHYDRATES

Review of some chemistry concepts

Classification

Composed of sugar (glycone) and a non-carbohydrate component (aglycone or genin), which can be a lipid, a protein...


Structure of carbohydrates (monosaccharides)


They are composed of carbon and water \rightarrow $Cn(H_2O)n$, ex: glucose : $C_6(H2O)_6$

They are molécules consisting of:

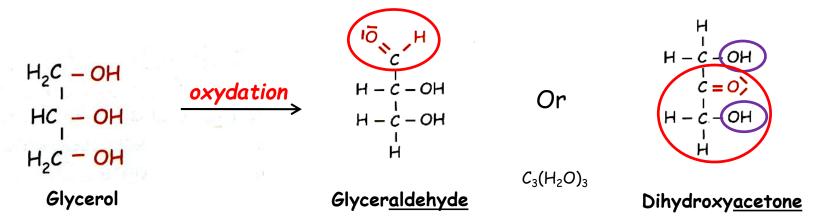
- Several hydroxyl groups
- > Single reducing aldehyde or ketone group.

This includes aldoses and Ketoses.

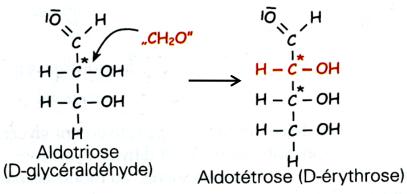
Two major families

Aldose

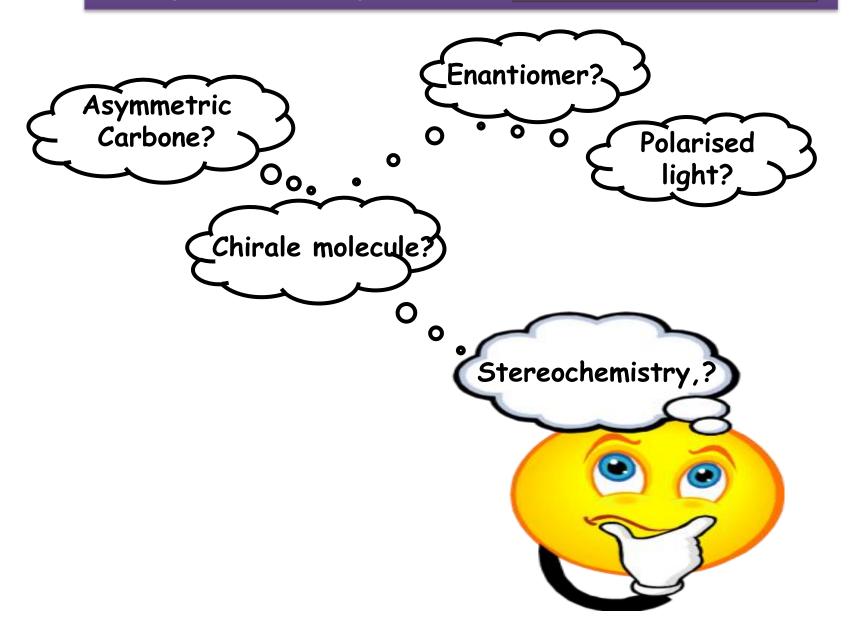
Ketose


Composed of 3 to 6 carbon atoms

To name them, we combine the type of reducing group with the number of carbon atoms


Type of reducing group - number of carbon atoms- ose

Nb C		Generic term
3	trioses	Aldotrioses, Ketotrioses
4	tetroses	Aldotétroses, Ketotétroses
5	pentoses	Aldopentoses, Ketopentoses
6	hexoses	Aldohexoses, Ketohexoses


- The simplest monosaccharides include triose sugars like Glyceraldehyde and dihydroxyacetone, which have only three atoms

- They grow by acquiring groups -CH₂O- ou -CHOH- (tetrose, pentose, hexose,...)

^{*:} asymmetric carbon/chiral carbon

Stereochemistry

A sub-discipline of chemistry \rightarrow it involves the study of the spatial arrangement of atoms in a molecule.

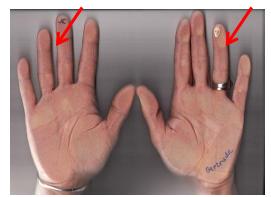
Chirale molecules

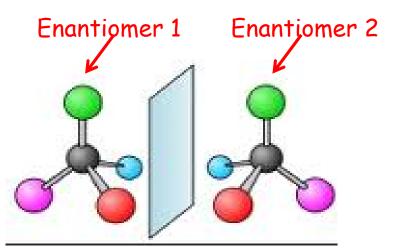
From the Greec meaning « hand ».

A chiral compound \rightarrow must contain at least one asymmetric carbone C^* .

If a molecule is chirale \rightarrow it has 2 enantiomers.

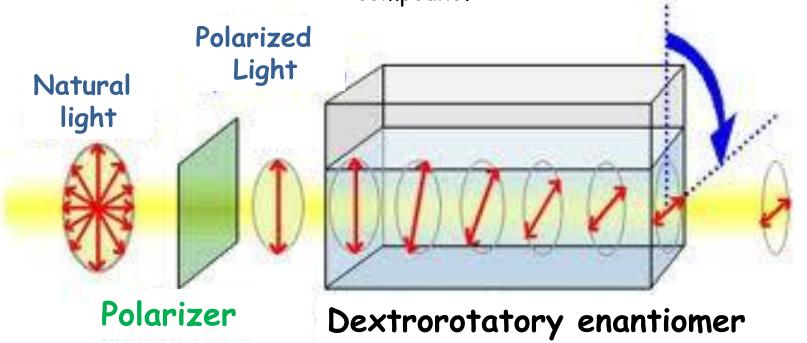
Enantiomers


From the Greec enantios meaning « opposite ».


These are molecules that have the same physical properties (solubility, boilling point, etc.), but they differ in an optical property \rightarrow the rotation of polarized light.

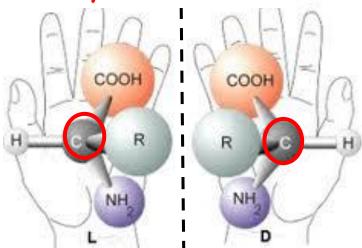
One rotates polarized light to the left = levorotatory (lévogyre). The other rotates polarized light to the right = dextrorotatory (dextrogyre).

2 enantiomers \rightarrow one is the mirror image of the other.


Enantiomer 1 Enantiomer 2

An exemple of polarized light deviation

The polarimeter is used to mesure the optical activity of chiral substances. When polarized light passes through a solution of a chiral compound (as a sugar), the plane of polarization is rotated. The direction and degree of this rotation, either to the right (dextrorotatory) or to the left (levorotatory), can be mesured to identify and characterize the chiral compound.



Stereochemistry of carbohydrates

All sugars, except dihydroxyacetone, have a chiral (asymmetric) carbon.

The asymmetric carbon (C^*) is a tetrahedral carbon that has four covalent bonds, each connecting to different atoms or groups of atoms \rightarrow It has no plane of symmetry.

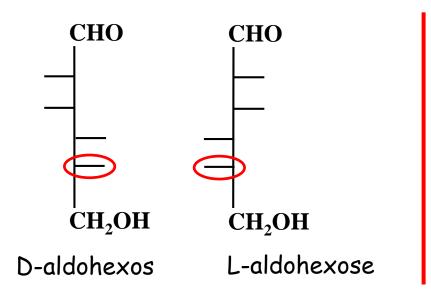
Asymmetric carbon

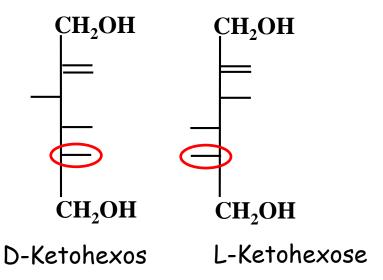
Non-asymmetric carbon

Two of the four substituants are identical, the carbon is not asymmetric. There is a plane of symmetry in this molecule, and is not chiral.

The glyceraldehyde has four covalent bonds at C_2 , each connecting to different groups of atoms.

→ This carbon is therefore asymmetric, making the molecule chiral and possessing two enantiomers.


Enantiomers


Note: All the sugars in metabolism (biological systems) have the D configuration

System of naming

To determine the configuration of a sugar, we must base it on the position of the OH group attached to the asymmetric carbon farthest from the aldehyde or ketone group (just before the terminal alcohol group).

By convention, the H atoms are not shown, and the OH groups are represented by lines.

Recapitulation: Exemple of Glucose

This carbon is not asymmetric because it's not tetrahedral

C*: asymmetric carbone

Aldehyde reducing group

Secondary alcohol functions

C₅*Configuration at right

→ D configuration

This carbon is not asymmetric because there is a plane of symetrie

Primary alcohol function

Recapitulation: Exemple of Fructose

This carbon is not asymmetric because there is a plane of symetrie

This carbon is not asymmetric because it's not tetrahedral

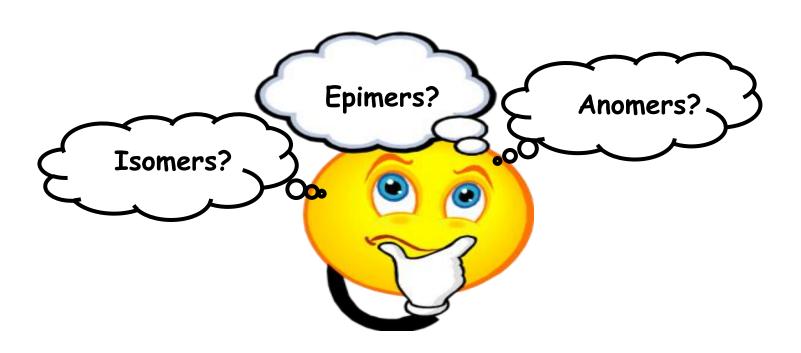
 $\dot{c} = 0$ Ketone reducing group

HO C H

3

H COH

H COH


Secondary alcohol functions

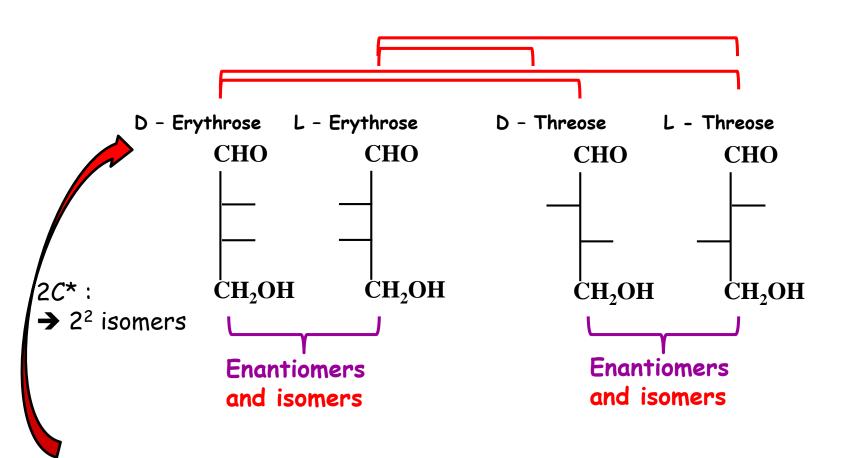
 C_5 *Configuration at right

→ D configuration

This carbon is not asymmetric because there is a plane of symetrie

Primary alcohol function

Isomers


From Greec (isos = identical) and (meros = part).

1/ Molecules with the same molecular formula (carbon atoms number),

2/ Vary in their spatial arrangement around one or more chiral center (C^*) (OH configuration).

Unlike enantiomers, isomers have different physical, chemical and biological properties.

Isomers

For a sugar containing xC*, there is 2x isomères

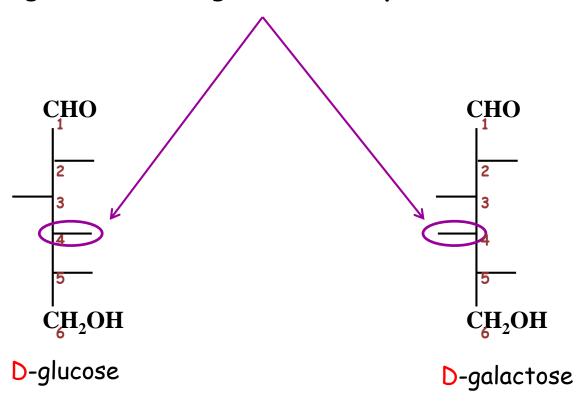
Aldoses

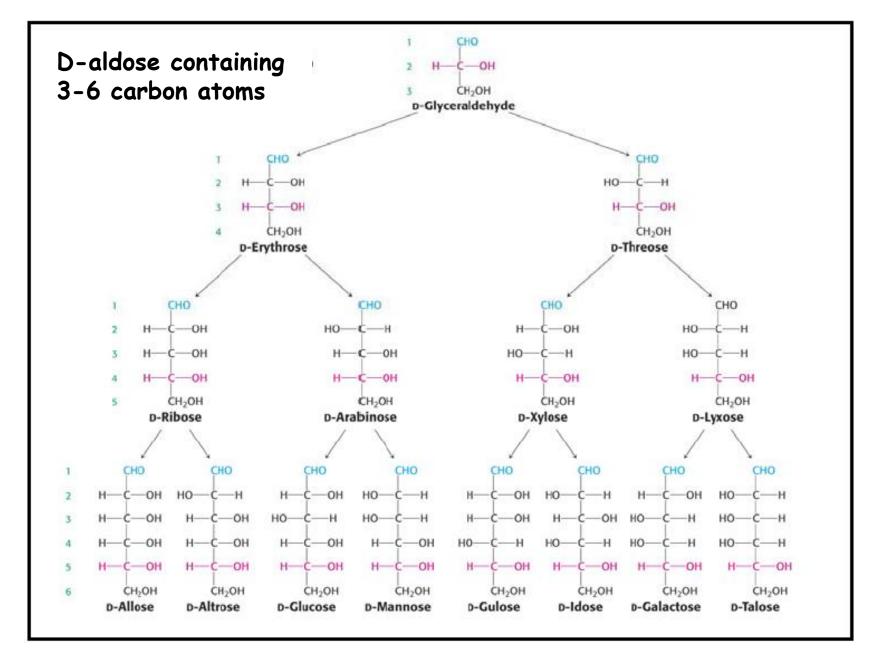
Number of isomers $n = 2^x$

Nbre of C	xC asymmetric	D configuration	L configuration	Total
3C	1	1	1	2
4C	2	2	2	4
5C	3	4	4	8
6C	4	8	8	16

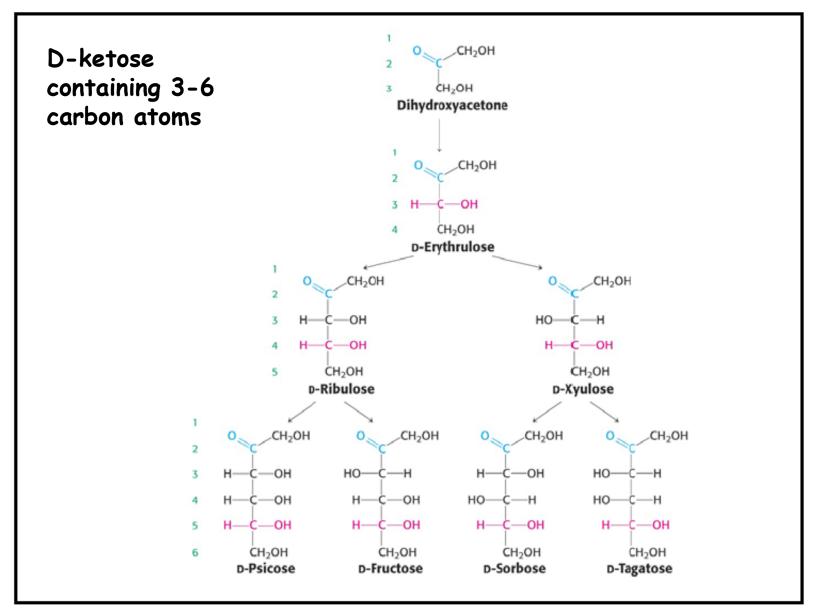
Ketoses

Nbre of C	xC asymmetric	D configuration	L configuration	Total
3C	0	-	-	1
4C	1	1	1	2
5C	2	2	2	4
6C	3	4	4	8

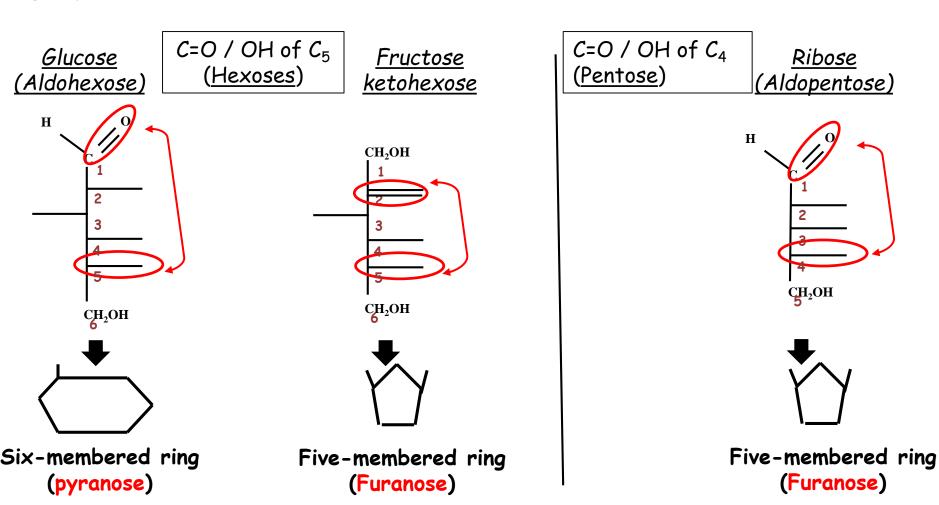

Epimers


Are a spécific type of isomer

1/ Molecules with the same molecular formula (carbon atoms number),

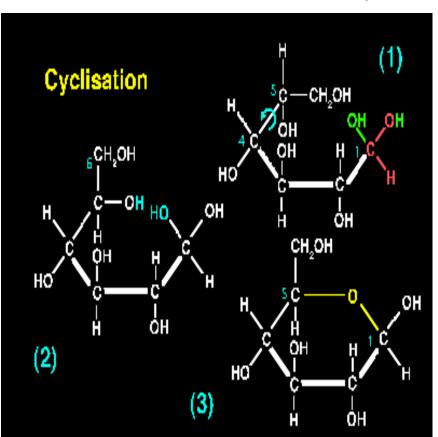

2/ Vary in their spatial arrangement around a single unique chiral center (C^*) (OH configuration).

The galactose and glucose are epimers at C*4


Nomenclature is defined based on the position of the hydroxyl group attached to the asymmetric carbon adjacent to the primary alcohol function with reference to glyceraldehyde

Nomenclature is defined based on the position of the hydroxyl group attached to the asymmetric carbon adjacent to the primary alcohol function that in farthest from the kenone group, with reference to the ketotetrose

Cyclic structure of sugars


When sugars dissolve in water, they often adopt the ring structures due to the reaction between their carbonyl group (C=O) (aldehyde or kenone) and a hydroxyl group within the molecule to form a hemiacetal.

Cyclic structure of sugars

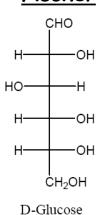
Cyclization reaction of Glucose

This reaction involves the formation of a cyclic structure from linear glucose. In aqueous solution, glucose can cyclize to form either pyranose or furanose form depending on the reaction conditions.

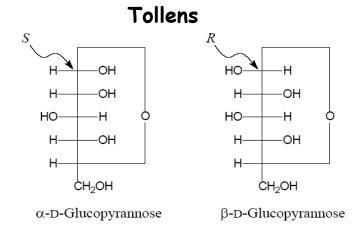

- 1) Aldehyde hydration: the aldehyde group react with water to form a diol (molecule with two hydroxyl groups).
 - C4-C5 Bond rotation.
- 3) The two hydroxyl groups attached by (C1 and C5) come close together leading to a chemical reaction.
- 4) Dehydration reaction: involves the formation of a cyclic structure where an oxygen atom forms a bridge connecting C1 and C5.

Cyclic structure of sugars

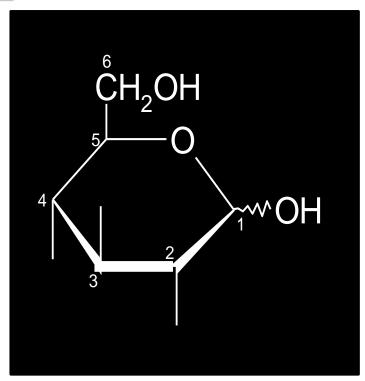
Cyclization reaction of Glucose


- \rightarrow The interaction between C=O/OH creates a new chiral C* (C n° 1),
- → It is called the anomeric carbon

 \rightarrow This results in two isomers a or β called anomers (based on the position of the OH group attached to the anomeric carbon)

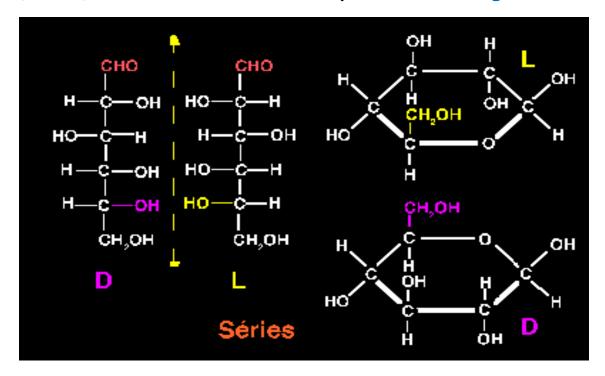

Expended formula

Linear représentation Fischer


Cyclic représentations

$\begin{array}{c} \underline{\text{Haworth}} \\ \\ \text{CH}_2\text{OH} \\ \\ \text{OH} \\ \\ \text{OH$

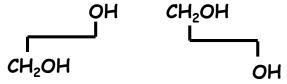
Haworth projection


- The cycle is considered as a plane perpendicular to the paper.
- The oxygen bridge is behind the plane.
- The carbons are arranged in a clockwise direction bonds not belonging to the cycle are placed above or below the plane, respecting the absolute configuration of the chiral carbons (C*).
- The OH groups that were on the right in the Fischer projection are found below the plane of the cycle, and the OH groups that were on the left are above the plane of the cycle.
- the OH groups are represented by a line, and the OH atoms are not shown.

Haworth projection Exemple: glucose

How to recognize the D or L series of sugars?

- > If the CH_2OH (of C6) is situated above the cycle \rightarrow D configuration,
- \triangleright if the CH₂OH (of C6) is situated below the cycle \rightarrow L configuration



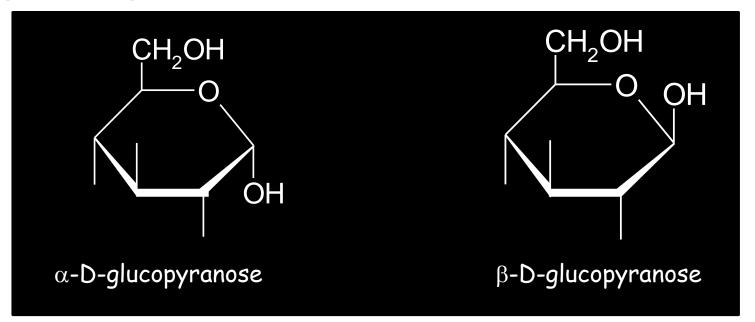
Haworth projection Exemple: glucose

As a general rule:

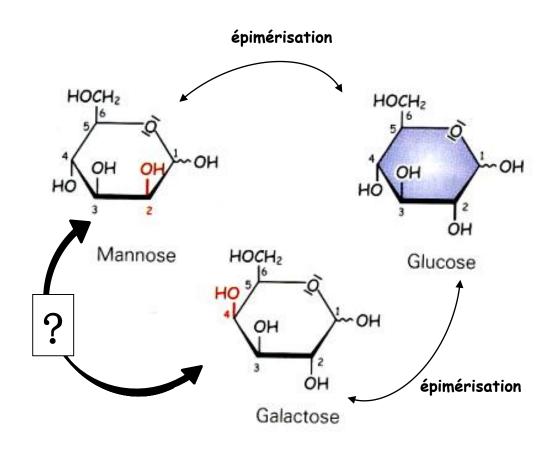
Anomer α

When OH of the C1 and CH₂OH of the C6 are in opposition

Anomer β


When OH of the C1 and CH₂OH of the C6 are located on the same side

Haworth projection


So, for a D-series sugar (CH₂OH on top):

- →If the hemiacetal hydroxyl group (OH attached to the anomeric C) is located below the plane of the ring, the sugar is on the α anomeric form.
- \rightarrow If the hemiacetal hydroxyl group is located above the plane of the ring. The sugar is on the β anomeric form.

Haworth projection

The concepts of epimers are the same in Haworth projection as in Fischer projection.

Optical rotation of sugars [a]D200

Anomers α and β do not rotate polarized light in the same way,

Ex:
$$\alpha$$
-D glucose \rightarrow +112°

$$\beta$$
-D glucose \rightarrow +18,7°

The optical rotation of the two sugars is calculated as follows:

$$[a]^{D}_{20^{\circ} \text{ (mixture)}} = [a]^{D}_{20^{\circ} \text{ (a glucose)}} * X_{\text{(a glucose)}} * [a]^{D}_{20^{\circ} \text{ (β glucose)}} *$$

Proportion of sugar

Ex: When preparing a solution consisting of : 50ml de α -D glucose + 50ml de β -D glucose

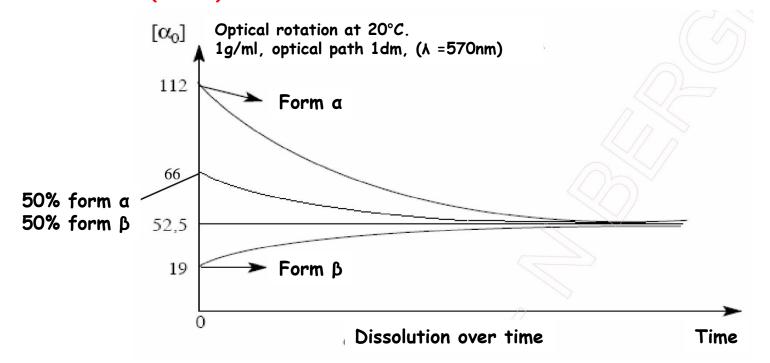
$$[\alpha]^{D}_{20^{\circ} \text{ (mixture)}} = 112^{\circ} * 0.5 + 18.7^{\circ} * 0.5 = 65.35^{\circ} \approx 66^{\circ}$$

Optical rotation of sugars [a]D_{20°}

The mutarotation

- The optical rotation of a α -D glucose solution freshly prepared = +112°
- Over time, this optical rotation is not stable \rightarrow it decreases!
- The optical rotation of a β -D glucose solution freshly prepared = +18,7°
- Over time, this optical rotation is not stable \rightarrow it increases!
- When cristalline glucose is dissolved in water, it undergoes cyclization, resulting in the formation of both a and β anomers in approximately equal proportions \Rightarrow 50% a form and 50% β form \Rightarrow [a]^D_{20° (initial)} \approx 66°
- Over time, it is observed that the optical rotation is not stable \rightarrow it decreases!

This change in optical rotation over time is called: mutarotation

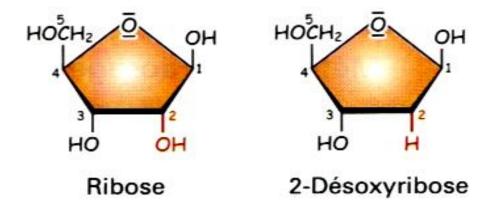

La mutarotation accompanies the conversion of the anomère $\alpha \iff$ anomère β until an equilibrium between the two forms is reached.

Optical rotation of sugars [a]D_{20°}

The mutarotation

Ex: for the glucose in aqueous solution, there is an equilibrium

$$[\alpha]^{D}_{20^{\circ} \text{ (mixture)}} = 112^{\circ} * 0.36 + 18.7^{\circ} * 0.64 = 52.5^{\circ}$$

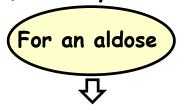

Hexoses (six-carbon sugars)

- Important role in métabolism: such as the crucial role of the glucose in energy production and other metabolic process.
- Directly and indirectly interconvertible.
- Almost never in a linear form \rightarrow Cyclization
- Aldohexoses important:
 - Glucose
 - Mannose
 - Galactose

- ketohexose the most important:
 - Fructose (Fruits, honey and some vegetables)

Pentoses (five-carbon sugars)

- Ribose → Ribonucleic acid (RNA)
- Desoxyribose → desoxyribonucleic acide (DNA)
- Group of furanoses

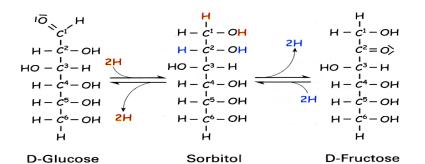

Chemical properties of sugars

- >The properties due to the hemiacetal function,
- > The properties due to the alcohol function,
- > The prperties due to the mutual influence of these two types of functions.

Chemical properties of sugars

Reduction

It is possible to reduce the aldehyde or ketone group of a sugar to an alcohol function, thereby obtaining:

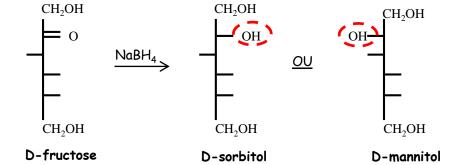


Un polyol (sugar alcohol)

Exemple:

D-Glucose → Sorbitol

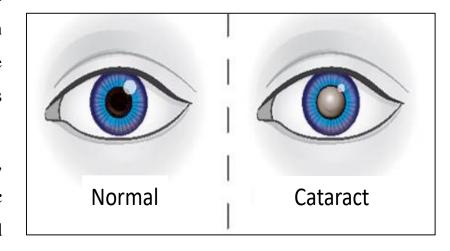
Reduction with sodium borohydride de NaBH₄



2 polyol epimers.

Exemple:

D-Fructose → 50% D-Sorbitol + 50% D-Mannitol epimers at C2*


Chemical properties of sugars

Reduction

Biological and practical contexts

⇒ In metabolism :

Sorbitol accumulates in certain tissues during chronic hyperglycemia due to the activation of the **polyol pathway**. In this pathway, **glucose is reduced to sorbitol** by the enzyme **aldose reductase**, particularly in insulin-independent tissues such as the **lens of the eye**, **peripheral nerves**, **and kidneys**. Since sorbitol does **not easily diffuse across cell membranes**, it tends to **accumulate intracellularly**, increasing **osmotic pressure**. This leads to **cellular swelling**, **oxidative stress**, and contributes to the development of **diabetic complications** such as: **Cataracts** (due to lens opacity), **peripheral neuropathy**, and **nephropathy** (kidney damage).

Chemical properties of sugars

Reduction

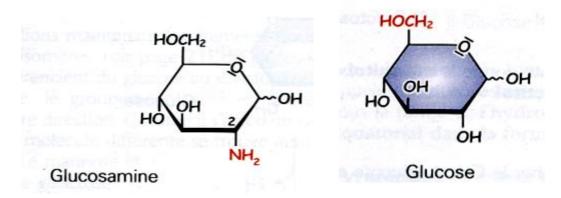
Biological and practical contexts

\Rightarrow In the food industry:

Sorbitol and Mannitol are widely used as a lowcalorie sweetener, particularly in sugar-free or diabetic-friendly products like: chewing gums, sugarless candies, toothpaste and mouthwash. It provides about 60% of the sweetness of sucrose but with fewer calories and a lower glycemic index, making it suitable for diabetics. However, in high doses, sorbitol and Mannitol can have a **laxative effect** due to there poor absorption in the small intestine.

Chemical properties of sugars

Attachment of an amine group

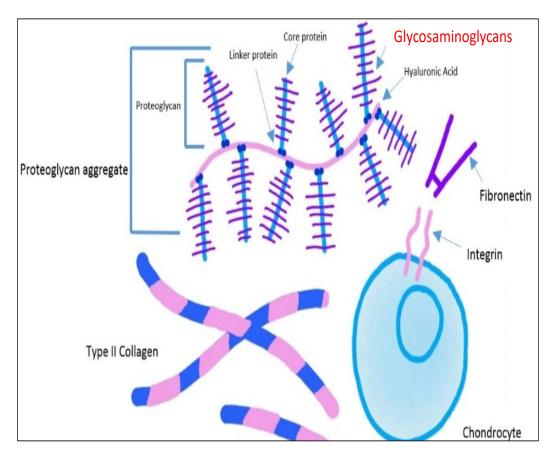

→ Osamines

- Amino sugar where an amino group replaces a hydroxyl group in the sugar molecule.
- Important in various biological processes and are component of polysaccharides and glycoprotéines of the cell membrane and the extracellular matrix (glycosaminoglycans/GAGs)

Glucose \rightarrow glucosamine

Mannose \rightarrow mannosamine

Galactose \rightarrow galactosemine


Chemical properties of sugars

Attachment of an amine group

Biological and practical contexts

Amino sugars play significant roles in biological recognition, cellular communication, and structural integrity of tissues. The glucosamine is an essential component of **Glycosaminoglycans** (**GAGs**) such as **hyaluronic acid**, found in articular cartilage, tendons, ligaments, and the extracellular matrix.

It is commercially available as a **dietary supplement**, widely used to potentially **slow cartilage degradation**.

Chemical properties of sugars

Oxidation

Mild oxidation

Controlled and less agressive oxidation which only affectes one function of the sugar

Oxidation of the aldehyde fonction

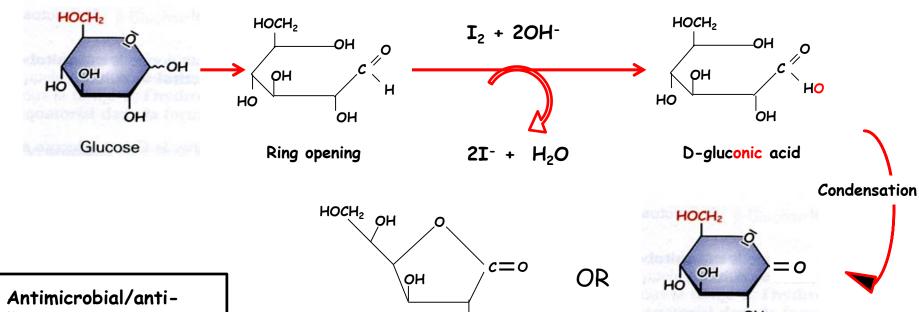
- \triangleright With Bromine (Br₂) or l'Iodine (I₂) in an alkalin medium
- >Oxidize aldoses but not ketoses (ketone fonction does not oxidize)
- > transformation into aldonic acide.
- -Glucose→gluconic acide
- Mannose→ mannonic acide
- Galactose > galactonic acide.

Oxidation of the primary alcohol fonction

- >The reducing group must be protected
- The pimary alcohol group ($-CH_2OH$) is oxidized to form a carboxylic acide (-COOH).
- > transformation into uronic acide.
- -Glucose→glucuronic acide
- Galactose→galacturonic acide.

Chemical properties of sugars

Oxidation


Glucose oxidation with Iodine (I_2) or Bromine (Br_2)

→ Gluconic Acide

COOH

CH2OH

Obtained by the oxidation of the aldehyde group of glucose (on C n° 1)

OH

- Antimicrobial/antiinflammatory,
- Intermediate for drug synthesis.

γ-gluconolactone acide Furan ring (C1-C4) δ -gluconolactone acid Pyran ring (C1-C5)

Chemical properties of sugars

Oxidation

Glucose oxidation with Iodine (I_2) or Bromine (Br_2)

Biological and practical contexts

⇒ In biochemistry :

Glucose oxidase is used to **quantify glucose** by measuring the production of gluconic acid and hydrogen peroxide. This principle is used in **blood glucose meters** (glucometers).

Chemical properties of sugars

Oxidation

Glucose oxidation

→ Glucuronic acide

- Oxidation of the primary alcohol fonction to a carboxylic acid yields an uronic acide with potassium permenganates $(KMnO_4)$.
- Produced glucuronic acid, which is a component of glycosaminoglycans (GAGs) such as heparin and hyaluronic acid. It's also a precursor in the synthesis pathway of vitamin C.

D-glucose

Glucuronic acide

Chemical properties of sugars

Oxidation

Glucose oxidation

Biological and practical contexts

- ⇒ In structural polysaccharides: Glucuronic acid is a component of glycosaminoglycans (GAGs) such as heparin and hyaluronic acid.
- ⇒ In detoxification: Glucuronic acid is used to conjugate toxic substances, drugs, and hormones (bilirubin, paracetamol, steroid hormones) in the liver, making them more hydrophilic and excretable in bile or urine.

Chemical properties of sugars

Oxidation

Action of a strong oxydants

These reactions are caused by strong oxidizing agents, which can simultaneously oxidize several functional groups

With hot nitric acid HNO₃

Case of aldoses

- > Simultaneous oxydation of the two terminal functions of the molecule (aldehyde and primary alcohol group) leading to the formation of two carboxyl groups and resulting in the formation of an aldaric acid.
- -Glucose→glucaric acid -Galactose→galactaric acide

Case of ketoses

> Cleavage of the carbon chain at the ketone function and formation of a mixture of carboxylic acids.

With periodic acid HIO₄

Oxidizes molecules that possess:

- > Two free and adjecent hydroxyl groups.
- > a free hydroxyl group and a free aldehyde function, adjacent.
- > This causes the cleavage of the C-C bond between the two groups, we obtain:
- > Formaldehyde (methanal) (CH₂O) from primary alcohol function (-CH₂OH),
- Formic (methanoic) acid (HCOOH) from secondary alcohol functions and aldehydes.

Chemical properties of sugars

Oxidation

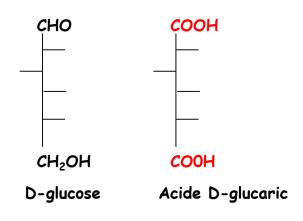
Action of a strong oxydants

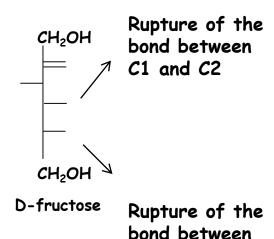
The strong oxidation of monosaccharides by nitric acid (HNO₃) or periodic acid (HIO₄) is a **purely chemical reaction** used in laboratory settings to analyze or characterize sugar structures.

These reactions do not occur in the human body and have no known biological or metabolic role.

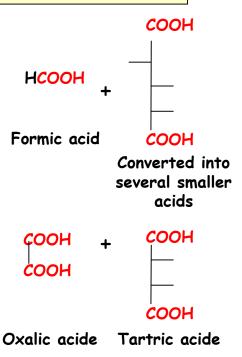
Chemical properties of sugars

Oxidation


Action of a strong oxydants Nitric acid HNO₃


Aldoses

Case of glucose

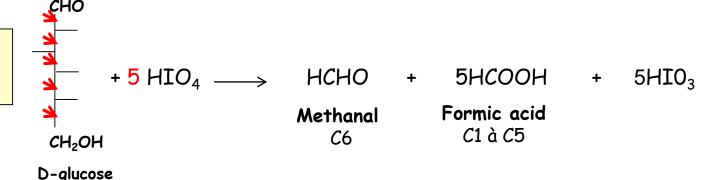

ketoses

Case of fructose

C2 and C3

Chemical properties of sugars

Oxidation

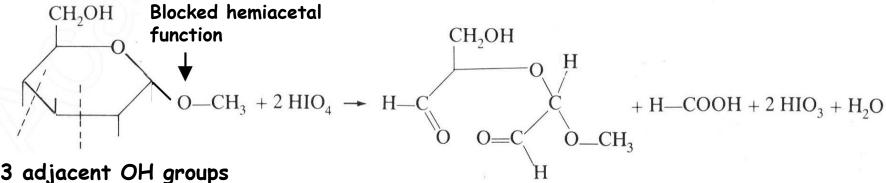

General principle

Action of a strong oxydants Periodic acid HIO₄

- R CHOH CHOH R' + HIO₄ \rightarrow R CHO + R' CHO + HIO₃ + H₂O 2 alcohols II 2 aldehydes
- R CHOH CHO + HIO4 alcohols II and aldehyde
- $R CHOH CH2OH + HIO_4$ $\rightarrow R CHO + HCOH + HIO_3 + H_2O$ alcohols I and II
- → R CHO + HCOOH + HIO₃ Aldehydes + formic acid
 - Aldehydes + methanal

Exemple

Case of Glucose



Chemical properties of sugars

Action of a strong oxydants

Application of periodic oxydation to the determination of the cyclic structure of a sugar

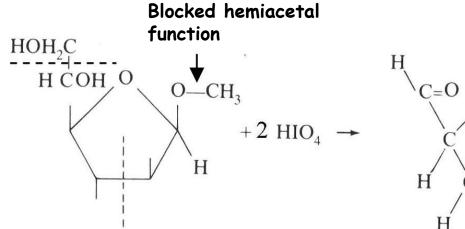
If the D-glucose in in pyranose form

3 adjacent OH groups

- →2 cleavages
- → 2 HIO₄ consumed

Oxidized C2 and C4

→ Aldehyde function


1 Formic acid (C3)

Chemical properties of sugars

Action of a strong oxydants

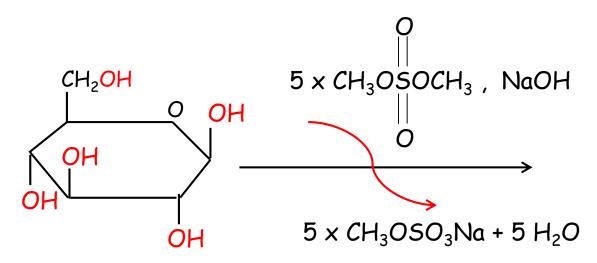
Application of periodic oxydation to the determination of the cyclic structure of a sugar

If the D-glucose in furanose forme

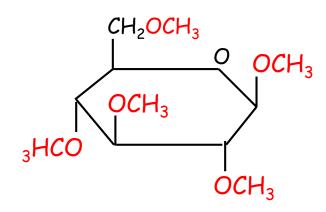
C = O $O - CH_3$ $+ HCHO + 2 HIO_3 + 2 H_2C$ + H C = O O = C + H

- 2 x 2 adjacent OH groups
- →2 cleavages
- \rightarrow 2 HIO₄ consumed

Oxidized C2 and C3


→ Aldehyde function

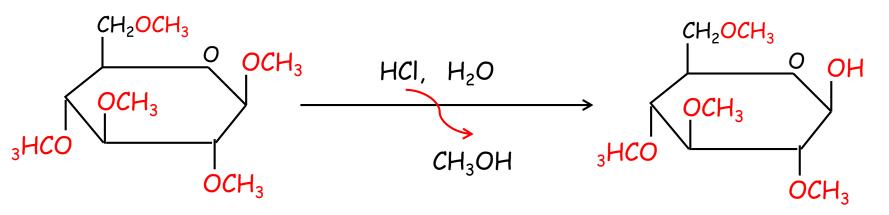
1 methanal (C3)


The reactions of monosaccharides

Permethylation with methyl iodide (CH_3I) or dimethyl sulfate (CH_3)₂ SO_4

Permethylation refers to the prolonged reaction leading to the methylation of all accessible hydroxyl groups of a sugar.

β-D glucopyranose



1,2,3,4,6 penta-O- methylβ-D-glucopyranose

The reactions of monosaccharides

Permethylation with methyl iodide (CH_3I) or dimethyl sulfate (CH_3)₂ SO_4

Il is sensitive to acid hydrolysis:

1,2,3,4,6 penta-O- methylβ-D-glucopyranose 2,3,4,6 tetra-O- methylβ-D-glucopyranose

The reactions of monosaccharides

Effet of methylation on optical rotation

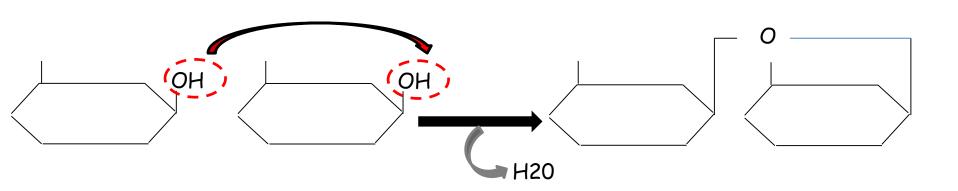
In a mixture of anomers $\alpha\text{-D}$ glucose et $\beta\text{-D}$ glucose, the angle of light deviation is calculated using the formula :

$$[a]^{D}_{20^{\circ} \text{ (mixture)}} = [a]^{D}_{20^{\circ} \text{ (a glucose)}} * X_{\text{ (a glucose)}} + [a]^{D}_{20^{\circ} \text{ (β glucose)}} * X_{\text{ (β glucose)}}$$

After a few hours, an equilibrium is established between the forms α and β and the angle of deviation changes.

Methylation (formation of COCH₃ bond) at the C1 position leads to the permanent fixation of the anomeric configuration α and β .

The angle of deviation remains the same because the initial proportion (X) of α -D glucose and β -D glucose do not change.


- → Sugars composed of two monosaccharide units
- → 4 disaccharides are important in human :
 - [Maltose, isomaltose], lactose, saccharose
- \rightarrow Liaison O-glycosidic bond (α ou β)
- → The bond between two sugars is made by an oxygen atom.

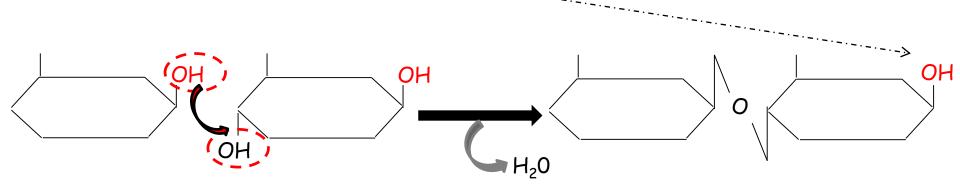
$$R-OH + R'-OH \rightarrow R-O-R' + H_2O$$

Non-reducing diholoside Osidic-Osidic bond

OH lié au carbone anomérique

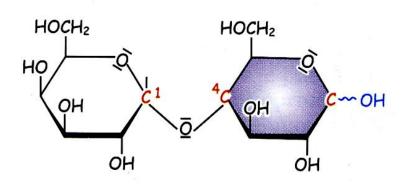
2 sugars linked by the hemiacetal OH groups through a Osidic-Osidic bond.

Both hemiacetal OH groups are involved in the glycosidic bond


The diholoside is non-reducing

Reducing diholoside

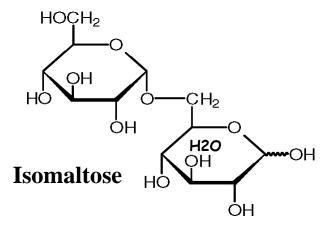
Liaison Osidic-Ose


2 sugars interact via a hemiacetal hydroxyl group of one sugar and an alcohol function Osido-Ose.

The remaining free hemiacetal hydroxyl group is responsible for the reducing ability of the diholoside.

Maltose and Isomaltose

- sucres of malt
- \bullet Hydrolysis \rightarrow 2 molécules of glucose
- basic constituent of starch and glycogen

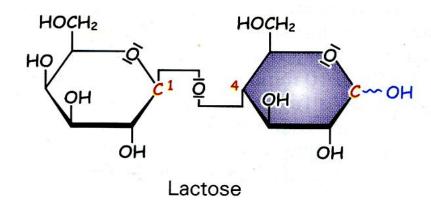


2 glucoses α (1,4))-glycosidic bond

Maltose

a D glucopyranosyl (1,4) glucopyranose

2 glucoses α (1,6)-glycosidique bond



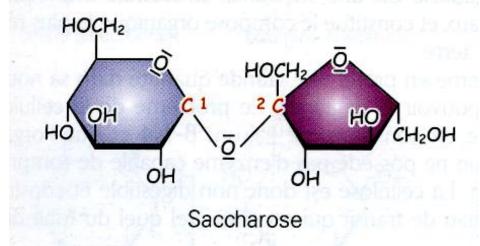
a D glucopyranosyl (1,6) glucopyranose

Reducing sugars because each has a free hemiacetal hydroxyl group

Lactose

- Milk sugar from mammals
- Composed of glucose and galactose
- * Substrate for lactic acid fermentation by lactobacilli, fundamental to cheese fermentation.

Glucose+galactose β (1,4)-glycosidic bond


β D galactopyranosyl (1,4) glucopyranose

Reducing because it has a free hemiacetal hydroxyl

<u>Saccharose</u>

- Cane sugar and beet sugar
- Composed of glucose and fructose

Glucose + fructose α (1,2)-glycosidic bond

a D glucopyranosyl (1,2) a fructofuranoside

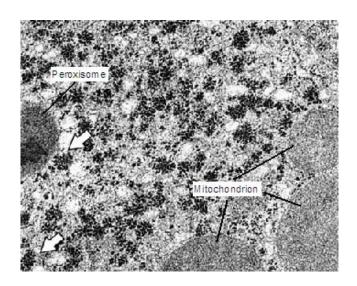
Non-reducing because it does not contain a free hemiacetal hydroxyl Both are involved in the glycosidic bond

Homoglycans

- Consisting of a single type of monosaccharides
 - Storage sugar: amidon, glycogène, dextran
 - Structural sugar : cellulose, chitine

Heteroglycans

- · Consisting of différents types of monosaccharides
- Often bound to proteins or lipids

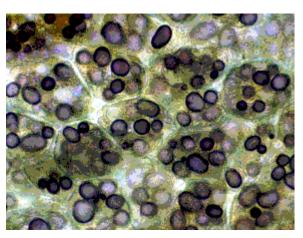

Glycoproteins


Glycolipids

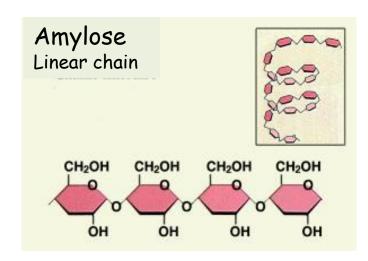
Storage Homoglycans

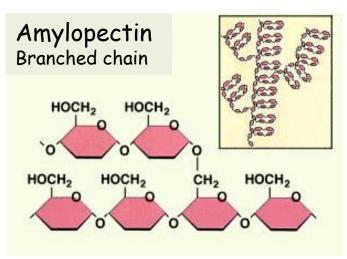
Glycogen

- α -1,4 bond and α -1,6 bond
- Primary storage substance in mammals
- Main storage sites in muscle and liver



Glycogen


Storage Homoglycans


Starch

- Composed of two types of glucose polymers:
 - l'amylose (linear chain), α -1,4 bond
 - •l'amylopectin (branched chain), α -1,4 and α -1,6 bonds.
- · Can contain between 100 and 20 000 glucose units
- Storage sugar of plants (roots, seeds, and fruits).
- Abundant in cereals (rice, wheat, corn, etc.) and tubers (potatoes).

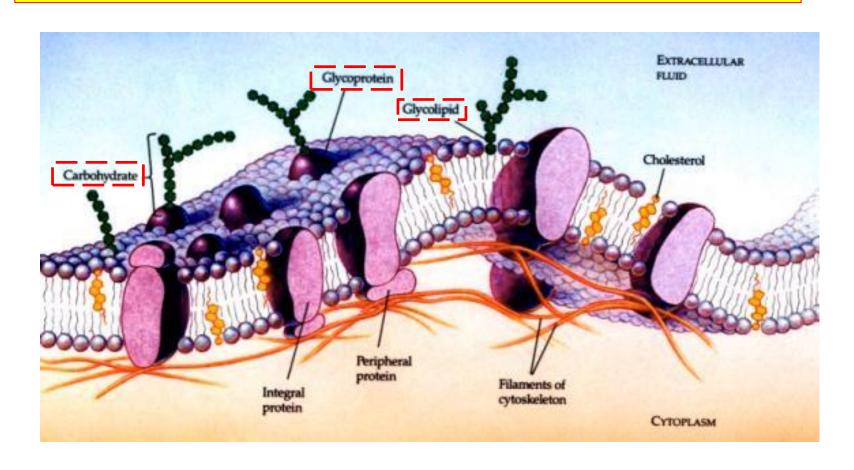
Starch grains in potato cells

Structural Homoglycans

Cellulose

- Linear polymer of glucose, β -1,4 glycosidic bond
- Major component of plant cell walls, providing stuctural support and rigidity.

pas dégradé dans l'intestin humain


Cellulose fiber

Macrofibril

Glucose chain

Heteroglycans

Glycoproteins et Glycolipids of cell membrane

Туре	Sugar	Structure	Function
Homoglycans/ Homopolysaccharids	Starch	Glucose a-1,4; a-1,6	Glucose storage in plants
	Glycogen	Glucose a-1,4; a-1,6	Glucose storage in mammals
	Cellulose	Glucose ß-1,4	Plant structure
Heteroglycans/ Heteropolysaccharids	Proteoglycans	Glycoseaminoglycans Repetitive units	Main component of extracellular matrix
	Peptidoglycans	N-acetyl-glucosamin Acid N-acetyt-muramic	Bacterial cell wall
	Glycoproteins	Up to 20 residues monosaccharidic	Plasma proteins
	Glycolipids	Up to 20 residues monosaccharidic	Membrane constituent