

الجمهورية الجزائرية الديمقر اطية الشعيبة

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

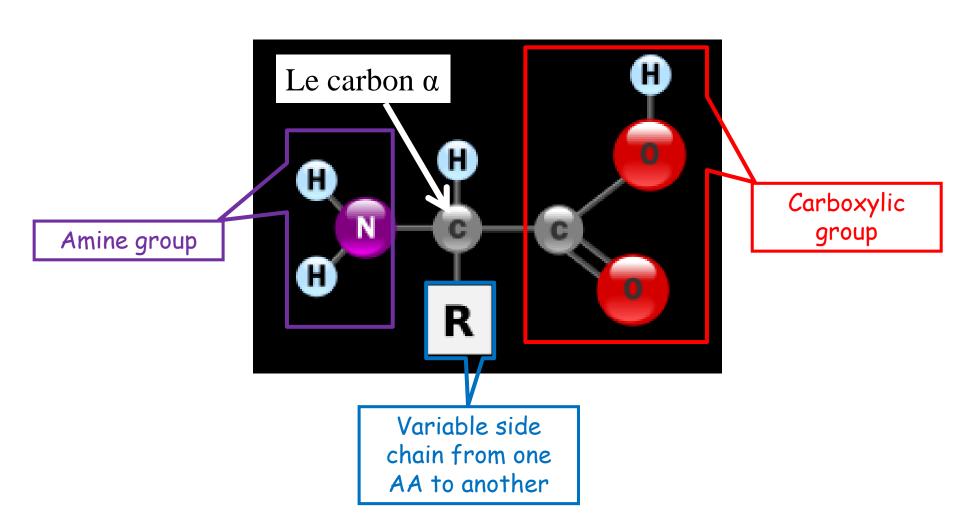
جامعة باجي مختار - عنابة **BADJI MOKHTAR UNIVERSITY - ANNABA** كلية العلوم FACULTY OF SCIENCES قسم البيوكيمياء DEPARTMENT OF BIOCHEMISTRY

Stuctural and Metabolic Biochemistry

TCSNV 2nd

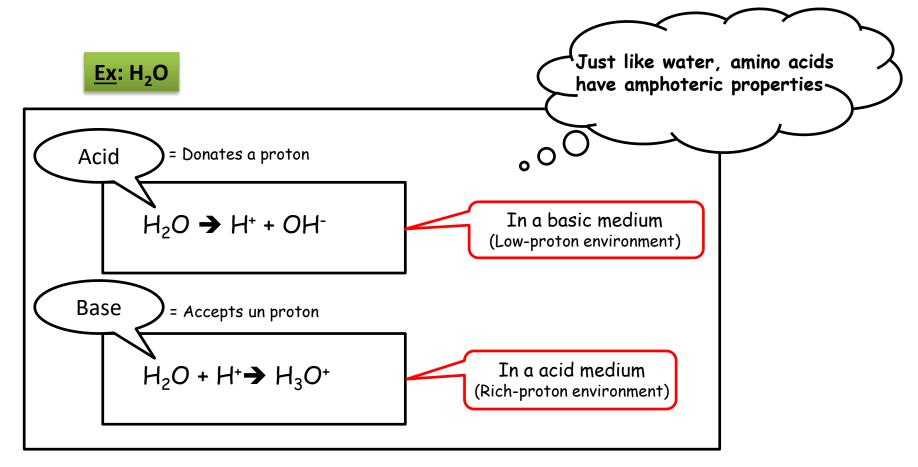
Fondamental unit 53

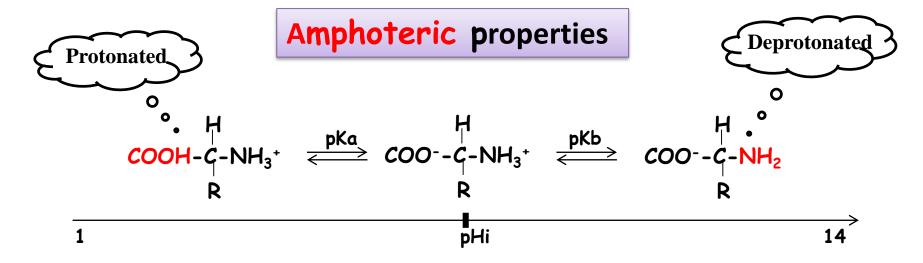
AMINO ACIDS / PROTEINS


Pr. KADI-BIREM

Protein > proteide > peptide > amino acid

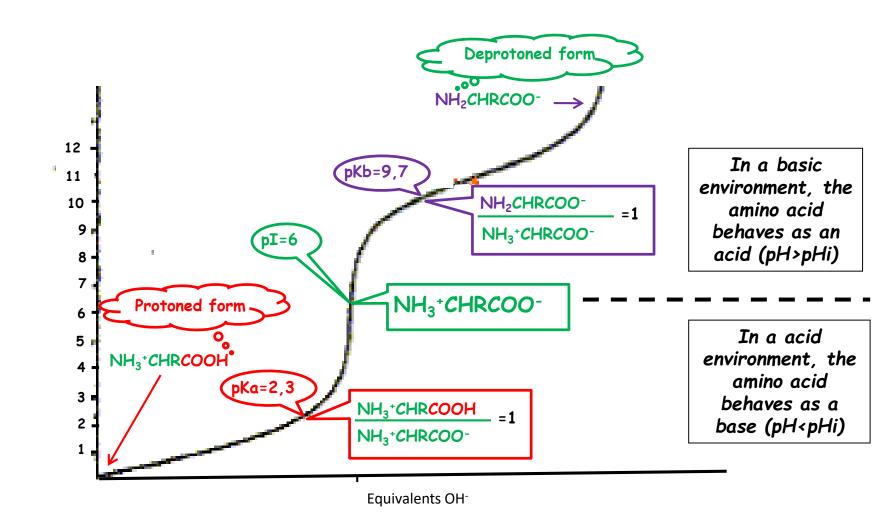
To date, 22 amino acids have been discovered in the proteins of living organisms. Among these, 20 are included in the genetic code of animals. Of these 20 amino acids, 8 are essential: they cannot be synthesized de novo by the organism and must therefore be obnained through the diet.


Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Threonine, Tryptophane, Valine


General structure of an amino acid

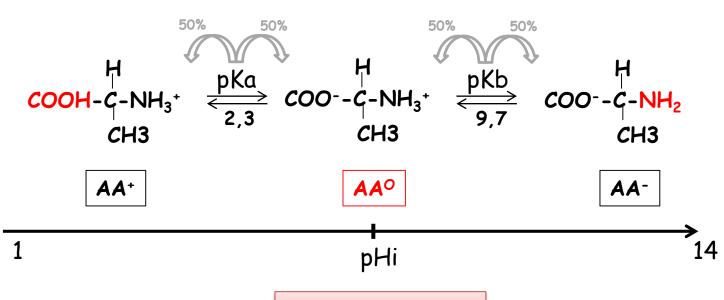
Amphoteric properties

→ Substance that can act as un acid and as a base



pK → a specific pH
 Every amine and carboxylic group have a pK (pKa / pKb)

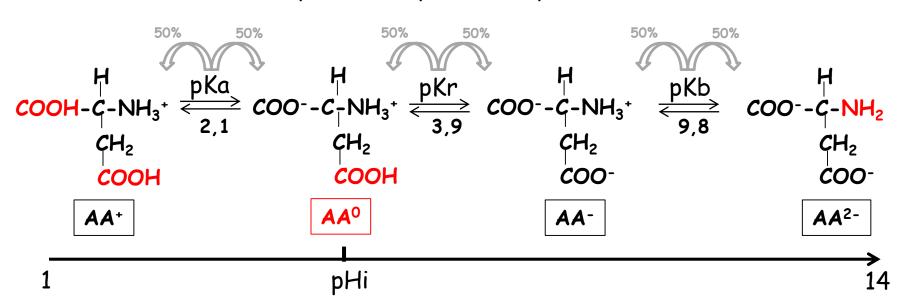
pH=pK → 50 % protoned form and 50 % deprotoned form


• Isoelectric point (pHi) pH = $(pK_A + pK_B)/2$

Titration of amino acids

Amphoteric properties

For an amino acid with a non ionizable side chain



$$pHi = pKa + pKb / 2$$

Amphoteric properties

For an amino acid with ionizable side chain

Ex1: Acide aspartique (ASP) (D)

$$pHi = pKa + pKr / 2$$

Amphoteric properties

For an amino acid with ionizable side chain

$$pHi = pKb + pKr / 2$$

Amphoteric properties

For an amino acid with ionizable side chain

Ex3: Cystéine (CYS) (C)

$$pHi = pKa + pKr / 2$$

Amphoteric properties

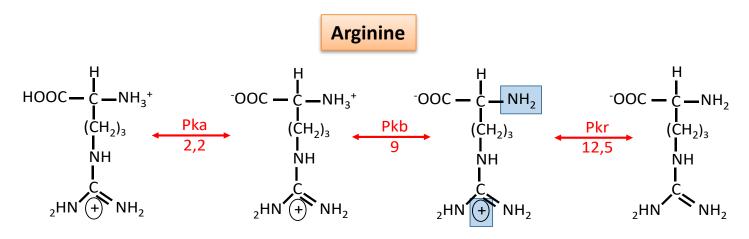
Ionisation of a peptide

Example: at pH = 10

To determine the ionization state of a peptide, we must first identify the ionizable groups.

This peptide has **5 ionizable** groups.

When studying the ionization of amino acids, the rule is:


- When pH > pI \rightarrow the amino acid is negatively charged (AA⁻)
- When $pH < pI \rightarrow$ the amino acid is positively charged (AA^{+})
- When $pH = pI \rightarrow the amino acid is neutral (AA⁰)$

In the case of a peptide, we consider the pKa, pKb, and pKr values.

Amphoteric properties

Ionisation of a peptide

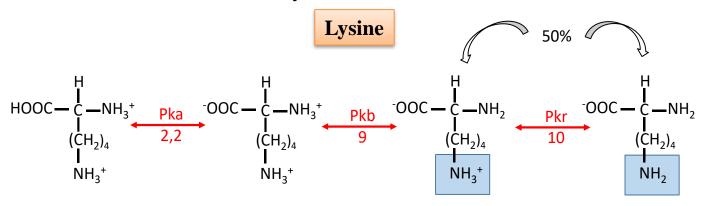
We analyze each amino acid individually:

- pH 10 > pKb, the α -amino group is deprotonated \rightarrow becomes NH₂.
- pH 10 < pKr: the guanidinium side chain is still protonated \rightarrow remains positively charged (Arg +).

Amphoteric properties

Ionisation of a peptide

We analyze each amino acid individually:


Methionine

- The α -amino and α -carboxyl groups are involved in the peptide bond.
- The side chain is **not ionizable**.
- This amino acid is **neutral at any pH**.

Amphoteric properties

Ionisation of a peptide

We analyze each amino acid individually:

- The α -amino and α -carboxyl groups are involved in the peptide bond.
- Only the **side chain** $(-NH_3^+)$ is considered.
- $pH = pKr \rightarrow 50\%$ of side chains are protonated (+), 50% are deprotonated (neutral).

So, we consider **both cases**:

- Neutral: -NH₂
- Positive: $-NH_3^+$

Amphoteric properties

Ionisation of a peptide

We analyze each amino acid individually:

Aspartate

HOOC
$$-C - NH_3^+$$
 Pka $-OOC - C - NH_3^+$ Pkb $-OOC - C - NH_3^+$ Pkr $-OOC - C - NH_2^-$ Pkr $-OOC$

• pH 10 > pKr: the carboxyl group is deprotonated \rightarrow COO

Amphoteric properties

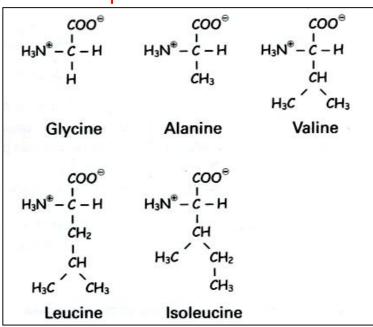
Ionisation of a peptide

We analyze each amino acid individually:

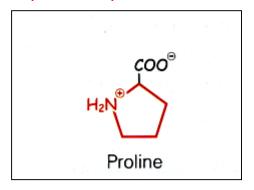
Glycine

HOOC
$$-\stackrel{H}{\underset{H}{\overset{+}}}$$
 $\stackrel{Pka}{\underset{2,3}{\overset{+}}}$ $\stackrel{Pkb}{\underset{H}{\overset{-}}}$ $\stackrel{OOC}{\underset{H}{\overset{+}}}$ $\stackrel{Pkb}{\underset{9,6}{\overset{-}}}$ $\stackrel{OOC}{\underset{H}{\overset{-}}}$ $\stackrel{H}{\underset{H}{\overset{+}}}$

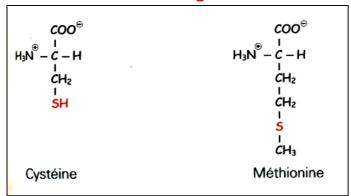
• pH 10 > pKa, the group is deprotonated \rightarrow COO

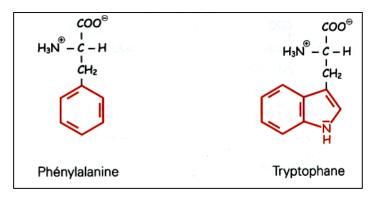

Final result at pH 10:

$$NH_2 - Arg(+) - Met(0) - Lys(0/+) - Asp(-) - Gly - COO^-$$


So, the **overall charge** is: **–1** (**or 0 if Lys is positively charged**) But assuming the average state, the charge is **approximately –1**.

Nonpolar amino acids (hydrophobes)


Aliphatic amino acids

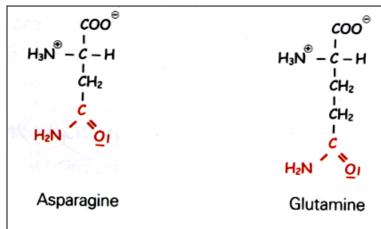

Aliphatic cyclic amino acid

Sultur-containing amino acids

Aromatic amino acid

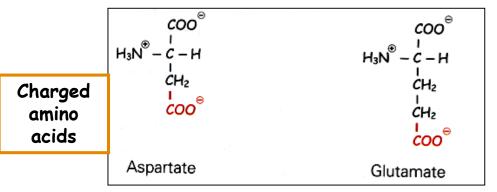
Polar amino acids (hydrophiles)

OH

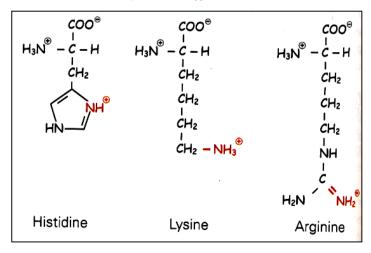

Tyrosine

Hydroxyl amino acids

Uncharged amino acids $COO^{\oplus} COO^{\oplus} COO^{\oplus} COO^{\oplus}$ $H_3N^{\oplus} - \stackrel{\stackrel{\stackrel{\stackrel{}}{C}}{C}}{-} H H_3N^{\oplus} - \stackrel{\stackrel{\stackrel{}{C}}{C}}{-} H H_3N^{\oplus} - \stackrel{\stackrel{\stackrel{}{C}}{C}}{-} H$ $CH_2 - OH HC - OH CH_2$


Sérine

Amide amino acids



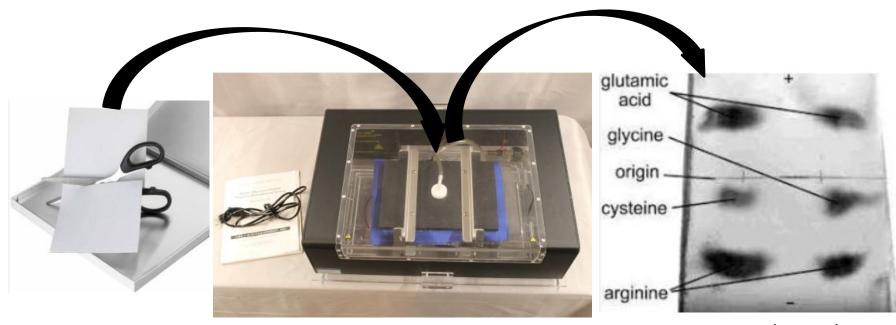
Dicarboxylic amino acids

Thréonine

Basic amino acids

Fractionation and dosage of amino acids

- ✓ Certain amino acids have specific reactions (coloration or spectrum) that allow for their quantification.
- ✓ Here are techniques for identifying amino acids:


Thin-Layer Electrophoresis (TLE)

Ion exchange column chromatography

Separation and quantification of amino acids

Thin layer Electrophoresis (TLE)

Allows for the separation of amino acids on a stationary phase (membrane) using an electric field based on their charges, with different solvents (mobile phase) and varying pH levels.

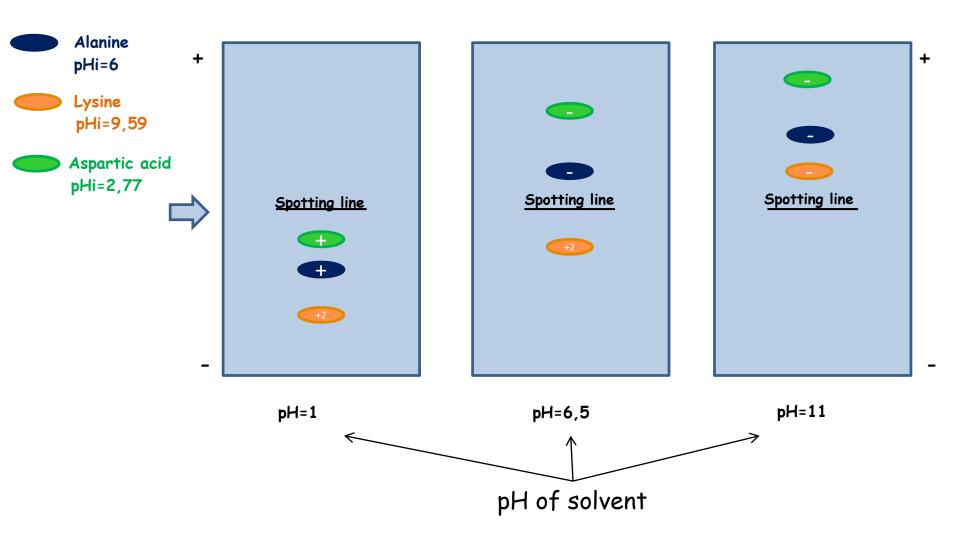
Cellulose layer

Electrophoresis chamber

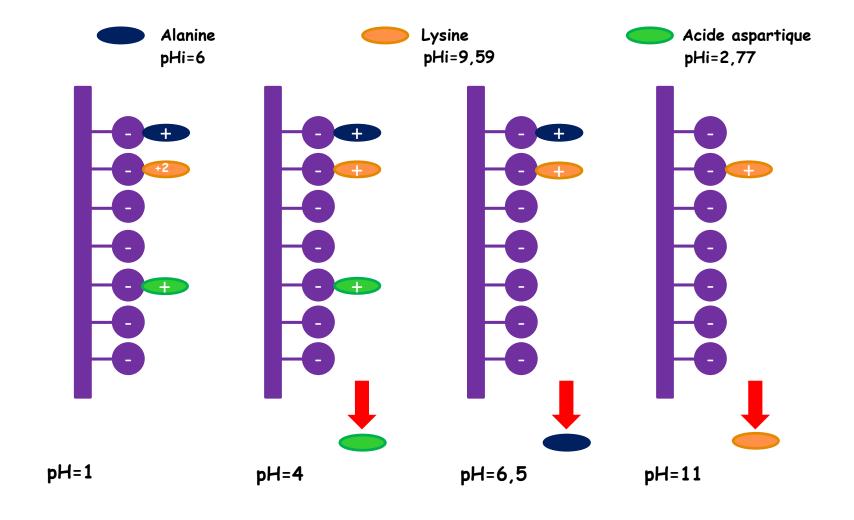
Amino acids visualization

Separation and quantification of amino acids

Ion exchange chromatography (chromatographie sur colonne de résine échangeuse d'ions)



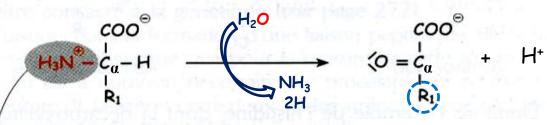
The column contains a resin with charged groups SO_3H^- Na⁺capable of exchanging ions with those in the solution.


At an acidic pH amino acids behave as bases (charge +). They displace some of the Na⁺ ions, replacing them and remaining attached to the column via electrostatic forces.

> a buffer with increasing pH is passed through the column. When the pH of the eluent exceeds the pI of the amino acid, its net charge changes, causing it to detach and move through the column. This process is called elution.

Separation with thin layer chromatography (CCM)

Separation with ion exchange chromatograpy


Reactions of amino acids

Desamination and transamination

Crucial for the degradation of amino acids

Essential for amino acid biosynthesis

Aminoacide oxydase

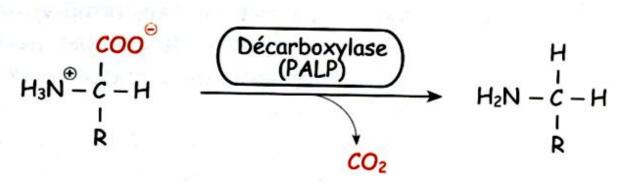
Transaminase

Non essential amino acid

Alpha-keto acid

Amino group (NH₂) is transferred from one amino acid to an alphaketo acid

$$\begin{array}{c} coo^{\oplus} \\ O = c_{\alpha} \\ R_{2} \end{array} \longrightarrow H_{3}N^{\oplus}$$


Alpha-keto acid

Essential amino acid

COO

Reactions of amino acids

Decarboxylation

Amino acid

Biogenic amine

Ex: histidine → histamine acts as a chemical mediator (neurotransmitter)

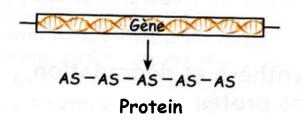
Characteristic constants of amino acids

Name	Code	Letter code	pKa of COOH	pKb of NH3	pKr of Lateral chain	MW
Alanine	ALA	А	2,3	9,7		89,09
Arginine	ARG	R	2,2	9	12,5	174,2
Asparagine	ASN	N	2	8,8		132,12
Acide aspartique	ASP	D	2,1	9,8	3,9	133,1
Cystéine	CYS	С	1,8	10,8	8,3	121,15
Glutamine	GLN	Q	2,2	9,1		146,15
Acide glutamique	GLU	E	2,2	9,7	4,2	147,13
Glycine	GLY	G	2,3	9,6		75,07
Histidine	HIS	н	1,8	9,2	6	155,16
Isoleucine	ILE	ı	2,4	9,7		131,17
Leucine	LEU	L	2,4	9,6		131,17
Lysine	LYS	К	2,2	9	10	146,19
Méthionine	MET	М	2,3	9,2		149,21
Phénylalanine	PHE	F	1,8	9,1		165,19
Proline	PRO	P	2	10,6		115,13
Sérine	SER	S	2,2	9,2		105,09
Thréonine	THR	Т	2,6	10,4		119,12
Tryptophane	TRP	w	2,4	9,4		204,23
Tyrosine	TYR	Υ	2,2	9,1	10,1	181,19
Valine	VAL	V	2,3	9,6		117,15

<u>Protreins</u>

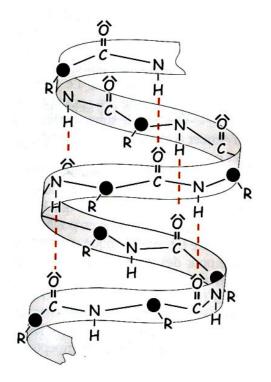
The peptide bond

COOH
$$H_2N - C - H$$

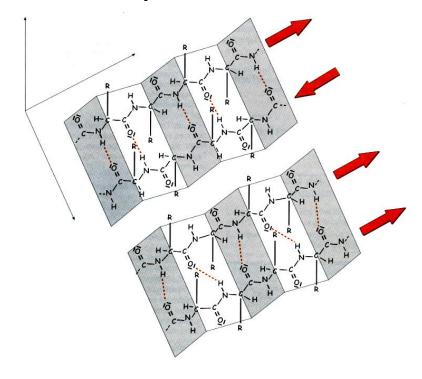

$$R_1$$

$$+ H_2N - C - H$$

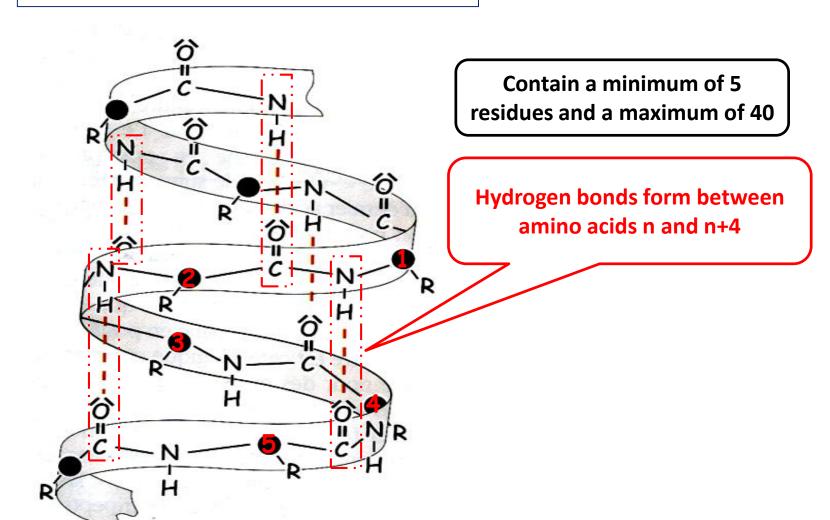
$$R_2$$
Aminoacide 1 + Aminoacide 2
$$+ H_2O$$

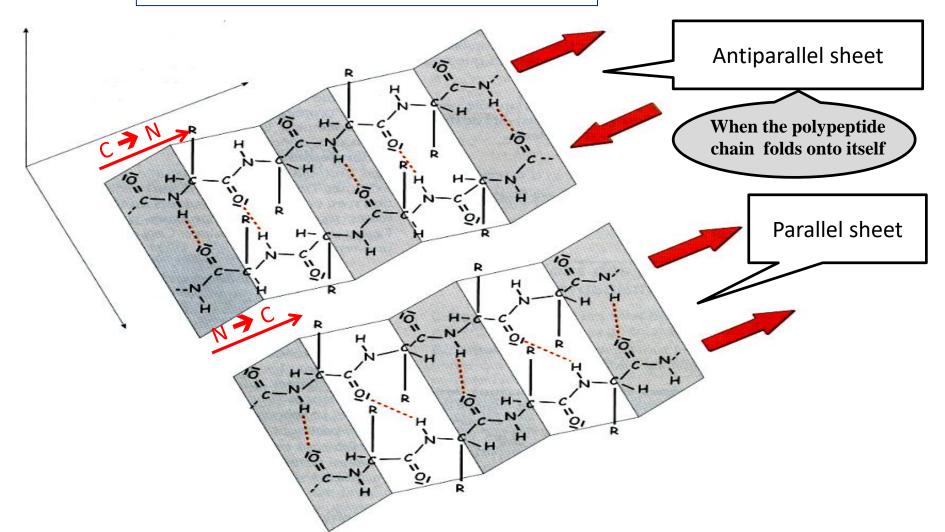

$$+ H_2$$

Primary structure



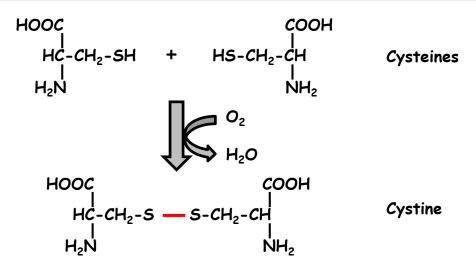
Secondary structure


 $-\alpha$ helix



Structure of a helix

Structure of β sheet

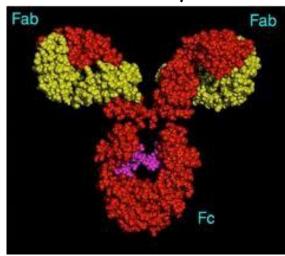


Tertiary structure

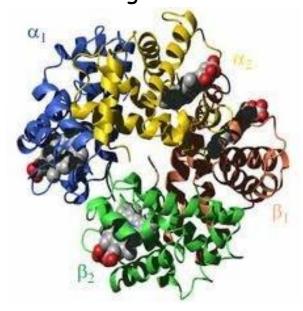
A helix + β sheet

Stable structure due to disulfide bridges (covalent bonds) formed between the thiol groups of sulfurcontaining amino acids, particulary <u>Cys</u> R-SH + SH-R' → R-S-S-R' +2H+ +2e

Oxidation of cysteine and the formation of cystine



Quaternary structure


Assembly of tertiary structures

→ Protein complex

Antibody

Hemoglobin

Denaturation of protein

The denaturation of protein requires the breaking of:

- → Disulfide bonds: through reduction (unfolding of the tertiary structure)
- → Hydrogen bonds: through heat (unfolding of the secondary structure)

The denatured primary structure migrates in electrophoresis through the pores of a polyacrylamide gel.

Reduction of disulfide bonds

- > Fractionated polypeptide chains are separated by electrophoresis or chromatography.
- > For each isolated chain, the amino acid composition is determined.

- > Determination of the N-terminal amino acid
- > Determination of the C-terminal amino acid

Determination of the N-terminal amino acid

Main reagents:

- o FDNB (1-fluoro 2,4-dinitrobenzene) (1945): Sanger reagent
- o PTC (phenylisothiocyanate): Edman reagent
- o Chlorure de dansyl (acide chloride 1-dimethylaminonaphtalene-5-sulfonique)

Enzymatic method:

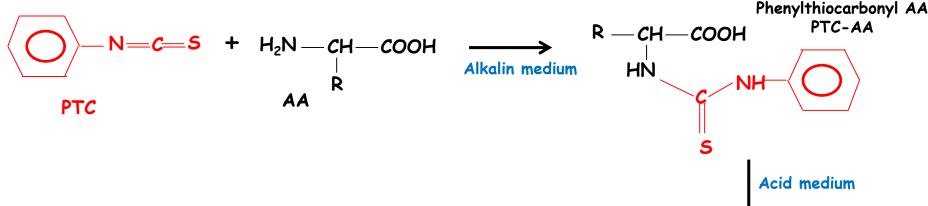
o Aminopeptidase: acts only on the last peptid bond.

Determination of the C-terminal amino acid

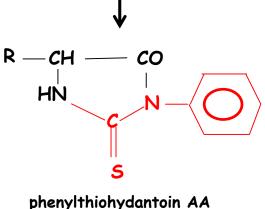
Enzymatique method:

Carboxypeptidase: acts only on the last peptid bond.

Determination of the N-terminal amino acid


FDNB (1-fluoro 2,4-dinitrobenzene) (1945): Sanger reagent
Non-recurrent method

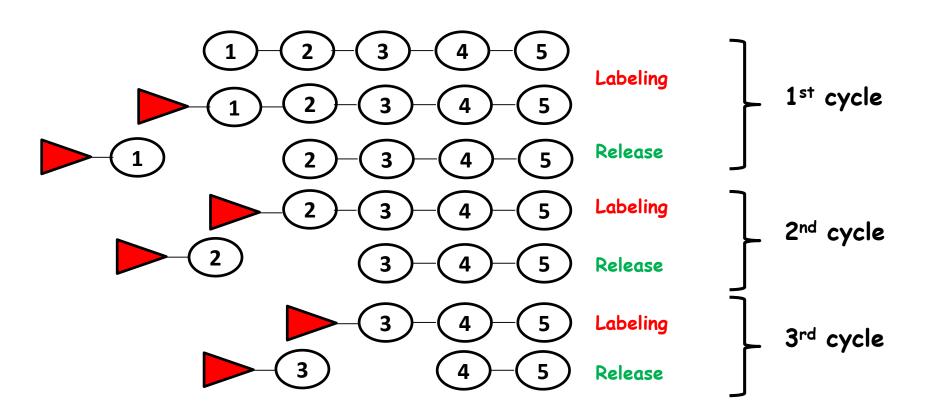
This method identifies N-terminal amino acid, while the rest of the chain is degraded and thus not reusable.


The formed compound is identified by chromatography and quantified by spectrophotometry.

Determination of the N-terminal amino acid

PTC (phenylisothiocyanate): Edman reagent Recurrent method

- Le PTH-amino acid detaches on its own, leaving the rest of the protein intact, which is why it is called a reccurent method.
- The formed compound is identified by chromatography and quantified by spectrophotometry.



phenylthiohydantoin AA (PTH-AA)

Determination of the N-terminal amino acid

Mechanism

PTC (phenylisothiocyanate): Edman reagent Recurrent method

Determination of the N-terminal amino acid

Mechanism

PTC (phenylisothiocyanate): Edman reagent Recurrent method

Labeling

Release

Peptide truncated by one amino acid

Determination of the N-terminal amino acid

Dansyl chloride (acide 1-diméthylaminonaphtalène-5-sulfonique chloride)

$$H_3C$$
 CH_3
 $+$
 $H_2N-CH-COOH$
 R
 $O=S=O$
 $HN-CH-COOH$
 R

Dansyl chloride

AA

Dansyl AA

The Dansyl-amino acide is highly fluorescent. It is separated by Thin layen chromatography (TLC) and detected by fluorescence.

Partial hydrolysis

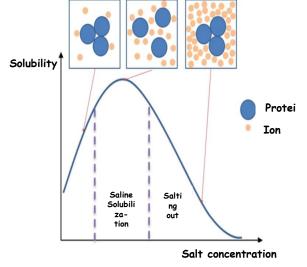
- Obtaining peptides either by chemical agents or by enzymes.
- Enzymatic proteolysis using endopeptidases:
 - \rightarrow The trypsin: cuts the CO(O) of the lysine and arginine.
 - → The chymotrypsin: cuts the CO(O) of aromatic amino acides (phenylalanine, tryptophane) and leucine (which are nonpolar amino acids).

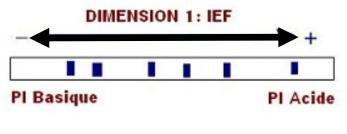
Properties of proteins

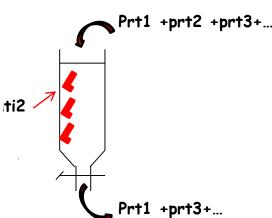
Solubility

Depends on ionic strengh and pH.

- At low ionic strengh, monovalent ions promote solubilization by stabilizing the charged groups of proteins.
- At higher strengh, ions tend to precipitate proteins. There is competition between the ions and proteins for water molecules, a phenomenon known as « salting out ».


Electrolytic properties


- In a basic medium, proteins behave as anions and migrate toward the anod in an electric field.
- Ina acid medium, proteins behave as cations and migrate toward the cathode (-).
- At pI, the net charge is zero, and proteins do not migrate.


Antigenic properties

An antigen is a substance capable of provoking the synthesis of specific antibodies when injected into a living organism.

- The part of the protein involved in the formation of the complex with the antibody is called the antigenic determinant.
- Used in protein assays, such as affinity chromatography.

