Part I

Introduction to Optimization

1 Introduction to Optimization

Optimization is a branch of mathematics. In practice, one starts from a real-world problem, models it, and solves it mathematically either analytically (as an optimization problem) or numerically (as a mathematical program).

1.0.1 Framework

An optimization problem consists of, given a function $f: S \to \mathbb{R}$ finding:

- 1) Its minimum value v (or maximum) over the set S.
- 2) A point $x_0 \in S$ at which this minimum (or maximum) is attained, i.e., i.e. $f(x_0) = v$.

1.0.2 Vocabulary

- -f f is the objective function
 - -v is the optimal value
 - $-x_0$ is the optimal solution
 - $-S = \{\text{the feasible set (the set of feasible solutions to the problem)}\}$
 - —- Problem formulation:: $\min_{x \in S} f(x) \operatorname{resp.max}_{x \in S} f(x)$

Remark: Link Between Minimum and Maximum

The Problem $\max_{x \in S} f(x)$ returns (x_0, v) , then the problem $\min_{x \in S} f(x)$ returns $(x_0, -v)$. Hence the connection. Thus, the search for a maximum can always be reduced to the search for a minimum.

1.0.3 Applications

Optimization is used in many fields:

- In operations research (e.g., transportation problems, economics, inventory management...)
- In numerical analysis (e.g., approximation/solving of linear and nonlinear systems...)
 - In control theory (e.g., system modeling, filtering...)

1.1 Different Types of Optimization

1.2 Classification of Optimization Problems

- Linear Optimization

```
f is a linear function : f(x) = \langle c, x \rangle, 
 S is defined by affine functions : ax + b \ge 0.
```

-Quadratic Optimization

```
f is a convex quadratic function: f(x) = \frac{1}{2} < Ax, x > + < b, x >
    A est une matrice symétrique semi-définie positive
    S est défini par des fonctions affines : ax + b > 0,
   -optimisation convexe
    f is a convex function and S is a convex domain

    Differentiable Optimization

    f is a differentiable function
    S is defined by functions (=constraints) differentiable.

    Nondifferentiable Optimization

   example: f(x) = \max\{f_1(x), ..., f_m(x)\}.
   -Infinite-dimensional Optimization
   example: Variational problems J(x) = \int_0^T L(t, x(t), x'(t)) dt where x belongs
to a set of functions X, x(0) = x_0 et x(T) = x_T.
   -Nonlinear Optimization
    We distinguish three types of problems:
    -Unconstrained problem: \min_{x \in \mathbb{R}^n} f(x),
    -Problem with equality constraints: \min_{x \in S} f(x) with S of the form S = \sum_{x \in S} f(x)
\{x \in \mathbb{R}^n
    t.q. g_i(x) = 0 for i = 1..l} and g_i: \mathbb{R}^n \to \mathbb{R}.
    -Problem with inequality constraints:\min_{x \in S} f(x) with S of the form S =
   such that h_i(x) \geq 0 for i = 1...l with h_i: \mathbb{R}^n \to \mathbb{R}.
```

1.3 Examples of Nonlinear Optimization Problems

A Production Problem

A factory needs n products $a_1, ..., a_n$ in quantities $x_1, ..., x_n$ to manufacture a finished product b in quantity $h(x_1, ..., x_n)$. Let p_i be the unit price of product i and p the selling price of the finished product. We want to calculate the optimal production. The goal is therefore to maximize the function $ph(x_1, ..., x_n) - \sum_{i=1}^{i=n} x_i p_i$.

1.4 Existence of a solution

Weierstrass Theorem: Let f be continuous function on $S \subset \mathbb{R}^n$ with S closed and bounded set. Then $\exists x_0 \in S$, such that $f(x_0) = \min_{x \in S} f(x)$, $\exists x_1 \in S$, such that $f(x_1) = \max_{x \in S} f(x)$.

This means that f is bounded on $S(f(x_0) \le f(x) \le f(x_1))$ and attains its bounds. The maximum and minimum are attained in this setting.

Example

- 1) Let $f: \mathbb{R}$ in \mathbb{R} is defined by f(x) = x. Let S = [0, 1].
- It is clear that the maximum is attained at 1 and $\max_{x \in S} f(x) = f(1) = 1$.
- S It is indeed a closed and bounded set. The conditions of the theorem are satisfied.
- 2) On the other hand, if we study the same function but this time on S = [0, 1[.

We also have $\max_{x \in S} f(x) = 1$. However, the maximum is not attained : $\nexists x_0 \in S$ such that $f(x_0) = \max_{x \in S} f(x)$.

Here, the conditions of the theorem are not satisfied: S is not a closed and bounded set.

Remark: To ensure uniqueness, one must use properties specific to the objective function, such as strict convexity, for example.