Inequalities and Modes of Convergence

Ex 1

- 1. Let $X \sim \text{Exponential}(\lambda)$, $\lambda > 0$. Using Markov's inequality, find an upper bound for $P(X \ge a)$, where a > 0, and compare it with the exact value.
 - Using Chebyshev's inequality, find an upper bound for $P(|X \mathbb{E}X| \ge b), b > 0$.
- 2. Let $X \sim \text{Geometric}(p)$ with $\mathbb{P}(X = k) = (1 p)^{k-1}p$, k = 1, 2, ...Using Markov's inequality, find an upper bound for $P(X \ge a)$, where a is a positive

Using Chebyshev's inequality, find an upper bound for $P(|X - \mathbb{E}X| \ge b)$.

3. The number of customers visiting a store during a day is modeled by a random variable X with mean $\mathbb{E}X = 100$ and variance Var(X) = 225. Using Chebyshev's inequality, find an upper bound for

$$P(X \le 80 \text{ or } X \ge 120).$$

4. Let X be a positive random variable with $\mathbb{E}X = 10$. Discuss:

integer, and compare with the exact value.

$$\mathbb{E}\left[\frac{1}{X+1}\right], \qquad \mathbb{E}\left[e^{1/(X+1)}\right], \qquad \mathbb{E}\left(\ln(X^{1/2})\right).$$

Ex 2 Let (X_n) be a sequence of random variables on the same probability space.

- 1. Let $X_n = \frac{1}{n}$. Show that $X_n \xrightarrow{\text{a.s.}} 0$.
- 2. Define

$$X_n = \begin{cases} 1, & \text{with probability } \frac{1}{n}, \\ 0, & \text{with probability } 1 - \frac{1}{n}. \end{cases}$$

Show that we have convergence in probability but not almost surely.

Ex 3

Let X be a random variable with $\mathbb{E}[X] = 10$ and Var(X) = 4.

- 1. Use Chebyshev's inequality to find an upper bound for $\mathbb{P}(|X-10| \geq 3)$.
- 2. Interpret the result.

- 3. Let $X_n \sim \text{Exponential}(n)$. Show that $X_n \stackrel{p}{\to} 0$.
- 4. Consider a sequence $\{X_n, n = 1, 2, 3, ...\}$ such that

$$X_n = \begin{cases} -\frac{1}{n}, & \text{with probability } \frac{1}{2}, \\ \frac{1}{n}, & \text{with probability } \frac{1}{2}. \end{cases}$$

Show that $X_n \xrightarrow{a.s.} 0$.

- 5. Let X_1, X_2, X_3, \ldots be independent random variables such that $X_n \sim \text{Bernoulli}\left(\frac{1}{n}\right)$ for $n = 2, 3, \ldots$ Check whether $X_n \xrightarrow{a.s.} 0$.
- 6. Let X_1, X_2, X_3, \ldots be a sequence of random variables such that

$$X_n \sim \text{Geometric}\left(\frac{\lambda}{n}\right), \quad n = 1, 2, 3, \dots,$$

where $\lambda > 0$ is a constant. Define a new sequence Y_n as

$$Y_n = \frac{1}{n}X_n, \quad n = 1, 2, 3, \dots$$

Show that Y_n converges in distribution to Exponential(λ).

7. Let X_1, X_2, X_3, \ldots be i.i.d. random variables with distribution Uniform (0, 1). Define the sequence

$$Y_n = \min(X_1, X_2, \dots, X_n).$$

Prove the following convergence results independently (do not derive weaker convergence from stronger ones):

- (a) $Y_n \xrightarrow{d} 0$,
- (b) $Y_n \xrightarrow{p} 0$,
- (c) $Y_n \xrightarrow{L^r} 0$, for all $r \ge 1$,
- (d) $Y_n \xrightarrow{a.s.} 0$.
- 8. Let X_1, X_2, X_3, \ldots be a sequence of random variables such that

$$X_n \sim \text{Poisson}(n\lambda), \quad n = 1, 2, 3, \dots,$$

where $\lambda > 0$ is a constant. Define

$$Y_n = \frac{1}{n}X_n, \quad n = 1, 2, 3, \dots$$

Show that Y_n converges in mean square to λ , i.e. $Y_n \xrightarrow{m.s.} \lambda$.

9. Let $X_n \sim \mathcal{N}(0, 1/n)$. Show $X_n \xrightarrow{\mathcal{L}} 0$ (the degenerate law at 0) and that $X_n \xrightarrow{\mathbb{P}} 0$. Does $X_n \xrightarrow{a.s.} 0$?

2