TD4 — Limit Theorems

Exercise 1

1. Let X_1, \ldots, X_n be i.i.d. random variables with mean μ and variance σ^2 . Show that

$$\frac{X_1^2 + \dots + X_n^2}{n} \xrightarrow{\mathbb{P}} c.$$

Find the constant c.

2. Let X_1, \ldots, X_n be i.i.d. uniform on [0,1]. Consider the geometric mean

$$G_n = (X_1 X_2 \cdots X_n)^{1/n}.$$

Show that G_n converges in probability to a constant C and find C.

3. Let X_1, \ldots, X_n be i.i.d. random variables with probability mass function

$$\mathbb{P}(X_1 = m) = \frac{(\log 2)^m}{2 m!}, \qquad m = 0, 1, 2, \dots$$

Let $S_n = X_1 + \cdots + X_n$. Which of the following sequences converges to 0 in probability?

- (a) $\frac{S_n}{n \log 2}$
- (b) $\frac{S_n n \log 2}{n}$ (c) $\frac{S_n \log 2}{n}$
- (d) $\frac{S_n n}{\log 2}$
- 4. Let X_1, \ldots, X_n be i.i.d. with density $f(x) = e^{-x}$ for $x \ge 0$. Let $S_n = X_1 + \cdots + X_n$ and $\overline{X}_n = S_n/n$. For which of the following sequences does the distribution *not* converge to a normal distribution?
 - (a) $\frac{S_n n}{\sqrt{n}}$
 - (b) $\frac{S_n}{\sqrt{n}}$

(c)
$$\sqrt{n}(\overline{X}_n - 1)$$

(d)
$$\frac{\sqrt{n}(\overline{X}_n - 1)}{2}$$

5. Let X_1, \ldots, X_n be i.i.d. with mean 5 and variance 9. As $n \to \infty$,

$$\frac{X_1^2 + \dots + X_n^2}{n} \xrightarrow{\mathbb{P}} \beta.$$

The value of β is: 14, 34, 28, 25.

6. Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 . As $n \to \infty$,

$$\frac{X_1^2 + \dots + X_n^2}{n} \xrightarrow{\mathbb{P}} \beta.$$

The value of β is: σ^2/n , $\mu^2 + \sigma^2$, $(\mu^2 + \sigma^2)/n$, μ^2 .

7. Let $X_i \sim \text{Exp}(1)$ i.i.d. Define $S_n = \sum_{i=1}^n X_i^2$. Then S_n/n converges in probability to: 0, 0.5, 1, 2.

Let $X_i \sim \mathcal{N}(0,4)$ i.i.d. Define $S_n = \sum_{i=1}^n X_i^2/n$. Which of the following statements are correct?

- 1. $\sqrt{n}(S_n-4)$ converges in distribution to $\mathcal{N}(0,4)$.
- 2. S_n converges in distribution to 4.
- 3. $\lim_{n \to \infty} n \operatorname{Var}(S_n) = 32.$
- 4. S_n converges in distribution to $\mathcal{N}(0,1)$.

Exercise 2

- 1. Toss a fair coin n times. Let $X_i=1$ for heads and 0 for tails. Show that $\overline{X}_n\to 0.5$ in probability.
- 2. Let X_1, \ldots, X_n be i.i.d. with distribution $\Gamma(4,2)$. Let $S_n = \sum_{i=1}^n X_i$. Compute:

$$\lim_{n\to\infty} \mathbb{P}(S_n \le 2n).$$

Options: (a) 0, (b) 0.5, (c) 1, (d) does not exist

Exercise 3

1. A coin is tossed 200 times. Approximate:

$$\mathbb{P}(80 \le H \le 120),$$

where H is the number of heads.

2. A random sample of size 100 is taken from a population with mean 60 and variance 400. Using the CLT, approximate:

$$\mathbb{P}\left(|\overline{X}_n - 60| \le d\right)$$

for d=4.

- 3. Let X_1,X_2,\ldots,X_n be a sequence of i.i.d. random variables with $\mathbb{E}[X_1]=\mu$ and $\mathrm{Var}(X_1)=\sigma^2<\infty.$
 - (a) Define $Y_i = X_i^2$. Determine the almost sure limit of

$$A_n = \frac{1}{n} \sum_{i=1}^n Y_i$$
 as $n \to \infty$.

(b) Let $X_i \sim \text{Exp}(1)$. Define

$$B_n = \frac{1}{n} \sum_{i=1}^n X_i^2.$$

Find the almost sure limit of B_n .

Exercise 4

1. Let $X_i \sim \text{Bernoulli}(0.4)$, n = 100. Approximate:

$$\mathbb{P}\left(\sum_{i=1}^{100} X_i \ge 50\right).$$

2. In a communication system, each data packet contains 1000 bits. Each bit is received in error with probability 0.1, independently. Compute:

$$\mathbb{P}(\text{more than } 120 \text{ errors}).$$

- 3. A random sample of size 100 is taken from a population with mean 60 and variance 400. Using the CLT, find the probability that the sample mean differs from μ by at most 4.
- 4. Let X_i be i.i.d. with mean 3 and variance 1/2. For $S_n = X_1 + \cdots + X_n$ with n = 120, estimate:

$$\mathbb{P}(340 < S_n < 370).$$