QCM1 – Advanced Probability

Multiple Choice Questions - Chapter 1

Q1: A probability space is:

- (a) A pair (Ω, \mathcal{F}) .
- (b) A triplet (Ω, \mathcal{F}, P) .
- (c) A set of random variables.
- (d) A probability density function.

Q2: A random variable is:

- (a) A deterministic function from R to R.
- (b) A function from the sample space Ω to R.
- (c) An event in Ω .
- (d) Always a normally distributed variable.

Q3: The expectation of a discrete random variable X is defined as:

- (a) $E[X] = \sum_{x} x f(x)$.
- (b) $E[X] = \int_{-\infty}^{\infty} f(x)dx$.
- (c) $E[X] = \sqrt{\operatorname{Var}(X)}$.
- (d) $E[X] = \sup(X)$.

Q4: The variance of a random variable X is:

- (a) $V(X) = E[X] (E[X])^2$.
- (b) $V(X) = E[(X E[X])^2].$
- (c) $V(X) = E[X^2]$.
- (d) $V(X) = \sqrt{E[X]}$.

Q5: Two events A and B are independent if:

- (a) $P(A \cup B) = P(A)P(B)$.
- (b) $P(A \cap B) = P(A)P(B)$.
- (c) $P(A|B) = P(A \cap B)$.
- (d) $P(A|B) = \frac{1}{2}$.

Q6: Which of the following is a discrete distribution?

- (a) Normal distribution.
- (b) Uniform distribution on [0, 1].
- (c) Binomial distribution.
- (d) Exponential distribution.

Q7: A random variable X follows the normal distribution $N(\mu, \sigma^2)$ if:

- (a) Its probability density function is $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
- (b) X takes integer values only.
- (c) E[X] = 0 and Var(X) = 1.
- (d) It is always symmetric around 1.

Q8: Which of the following properties of expectation is correct?

- (a) E[aX + b] = aE[X] + b.
- (b) $E[X + Y] = E[X] \cdot E[Y]$ for all random variables.
- (c) E[c] = 0 for any constant c.
- (d) E[XY] = E[X] + E[Y] if X and Y are independent.

Q9: The k-th moment of a random variable X is defined as:

- (a) $E[(X E[X])^k]$.
- (b) $E[X^k]$.
- (c) $\operatorname{Var}(X)^k$.
- (d) $\sqrt[k]{E[X]}$.