1 Types de convergence de variables aléatoires

1.1 Convergence en loi

Soient $F_1, F_2, ...$ la suite des focntions de répartition associèes aux variables aléatoires reélles $X_1, X_2, ...$ respectivement, et F la fonction de répartition de la variable aléatoire X.

Autreument dit, F_n est définie par

$$F_n(x) = P\left[X_n \le x\right],$$

et F par

$$F(x) = P[X < x].$$

On dit que la suite converge en loi ou en distribution si:

$$\lim_{n\to+\infty} F_n(a) = F(a)$$
, pour tout réel a où F est continue.

On note la convergence en loi par:

$$X_n \to^{\mathcal{L}} X$$

Remarque: la convergence en loi est la forme la plus faible.

1.2 Convergence en probabilité

Soit $(X_n)_n$ une suite de variables aléatoires reélles définies sur le même espace probabilisé (Ω, Σ, P) .

On dit que $(X_n)_n$ converge en probabilité vers X si:

$$\forall \varepsilon \succ 0, \lim_{n \to +\infty} P[|X_n - X| \ge \varepsilon] = 0.$$

On note:

$$X_n \to^P X$$

1.3 Convergence presque sûre

On dit que $(X_n)_n$ converge presque sûrement vers X si:

$$P\left[\lim_{n\to+\infty} X_n = X\right] = 1,$$

ou de manière équivalente, s'il existe N un sous ensemble P-négligeable: $N\subset\Omega,$ tel que:

$$\forall w \in \Omega \setminus N , \ X_n(w) \to_{n \to +\infty} X(w).$$

On écrit :

$$X_n \to^{P.S} X$$
.