Décomposition LU et de Cholesky:

I Le développement

Le but de ce développement est de démontrer deux types de décompositions de matrices qui sont utilisés en analyse numérique lors de la résolution de systèmes.

Théorème 1 : Décomposition LU [Rombaldi, p.690] :

Si $A \in GL_n(\mathbb{K})$, alors A admet une décomposition A = LU où L est triangulaire inférieure à diagonale unité et U triangulaire supérieure si, et seulement si, tous les déterminants principaux de A sont non nuls.

De plus, cette décomposition est unique lorsqu'elle existe.

Preuve:

- * Montrons la condition nécessaire et suffisante par récurrence sur $n \in \mathbb{N}^*$:
- Initialisation pour n = 1:

Le cas n = 1 est vérifié puisque la matrice est déjà de la forme donnée.

- Hérédité :

On suppose le résultat démontré pour toute matrice de $GL_n(\mathbb{K})$. Soit $A \in GL_{n+1}(\mathbb{K})$.

On peut alors écrire A sous la forme $A = \begin{pmatrix} A_1 & B_1 \\ C_1 & a_{n,n} \end{pmatrix}$.

- Si A a tous ses déterminants principaux non nuls, alors A_1 est inversible et donc par hypothèse de récurrence, il existe une matrice L_1 triangulaire inférieure et à diagonale unité et U_1 triangulaire supérieure telles que $A_1 = L_1U_1$.

Cherchons donc $L=\begin{pmatrix} L_1 & 0 \\ D_1 & 1 \end{pmatrix}$ et $U=\begin{pmatrix} U_1 & E_1 \\ 0 & \alpha \end{pmatrix}$ (avec $\alpha\in\mathbb{K}^*$) telles que A=LU. Cette condition nous donne :

$$\begin{cases} A_1 = L_1 U_1 \\ B_1 = L_1 E_1 \\ C_1 = D_1 U_1 \\ a_{n,n} = D_1 E_1 + \alpha \end{cases}$$

On a donc $D_1 = C_1 U_1^{-1}$, $E_1 = B_1 L_1^{-1}$ et $\alpha = a_{n,n} - D_1 E_1$. Ainsi ces matrices L et U vérifient A = LU.

- Réciproquement, si A=LU, alors on montre de même que ci-dessus que A_1 s'écrit sous la forme $A_1=L_1U_1$ et ainsi, par hypothèse de récurrence, les déterminants principaux de A_1 sont tous non nuls.

Et puisque $\det(A) \neq 0$ (puisque $A \in \mathrm{GL}_n(\mathbb{K})$), ceux de A sont tous nuls aussi.

* Montrons l'unicité :

Supposons que A s'écrit $A = L_1U_1 = L_2U_2$, avec L_1, L_2 et U_1, U_2 qui vérifient les conditions du théorème.

On a alors $L_2^{-1}L_1 = U_2U_1^{-1}$ avec $L_2^{-1}L_1$ (respectivement $U_2U_1^{-1}$) triangulaire inférieure (respectivement triangulaire supérieure). Ainsi, $L_2^{-1}L_1$ est diagonale et dont les coefficients sur la diagonale sont des 1 et donc $L_2^{-1}L_1 = I_n$.

Finalement, on a donc $L_1 = L_2$ et par conséquent $U_1 = \overline{U_2}$.

Théorème 2 : Critère de Sylvester [Rombaldi, p.478] :

Soit $A \in \mathcal{S}_n(\mathbb{R})$.

 ${\cal A}$ est définie positive si, et seulement si, tous ses déterminants principaux sont strictement positifs.

Preuve:

Soit $A \in \mathcal{S}_n(\mathbb{R})$.

* Supposons que A est définie positive.

Puisque $A \in \mathcal{S}_n(\mathbb{R})$, il existe une base $\mathcal{B} = (e_1, ..., e_n)$ de \mathbb{R}^n et une forme quadratique $q : \mathbb{R}^n \longrightarrow \mathbb{R}$ telles que $A = \operatorname{Mat}_{\mathcal{B}}(q)$.

Pour tout $k \in [1; n]$, on pose $E_k = \text{Vect}(e_1, ..., e_k)$ et $A_k = \text{Mat}_{(e_1, ..., e_k)}(q|_{E_k})$. Puisque $A \in \mathcal{S}_n^{++}(\mathbb{R})$, on a q définie positive et donc $q|_{E_k}$ aussi et par conséquent, $\det(A_k) > 0$.

- * Montrons par récurrence sur $n\in\mathbb{N}^*$ que si tous les déterminants principaux sont strictement positifs, alors la matrice est définie positive :
- Initialisation pour n = 1:

Le cas n=1 est vérifié car le seul déterminant principal de la matrice est son unique coefficient et il est strictement positif par hypothèse.

- Hérédité :

On suppose la propriété démontré pour toute matrice de $\mathcal{S}_n(\mathbb{R})$.

Soit $A \in \mathcal{S}_{n+1}(\mathbb{R})$.

On note q la forme quadratique associée à A dans une base $\mathcal{B} = (e_1, ..., e_{n+1})$ de \mathbb{R}^{n+1} et on pose $H_n = \text{Vect}(e_1, ..., e_n)$.

La matrice $A_n = \operatorname{Mat}_{H_n}(q)$ a tous ses déterminants principaux strictement positifs et donc, par hypothèse de récurrence, A_n est définie positive et il en va de même pour $q|_{H_n}$.

La signature de q ne peut donc être que (n+1,0) ou (n,1). Or, si la signature de q est (n,1), alors une existe une base q-orthogonale \mathcal{B}' et $P \in GL_n(\mathbb{R})$ telles que :

$$A = P \operatorname{diag}(1, ..., 1, -1)P^{\mathsf{T}}$$

Ainsi, on a $0 < \det(A) = -\det(P)^2$, ce qui est contradictoire.

Finalement, la signature de q est (n+1,0) et donc q est définie positive et ainsi A aussi.

Théorème 3 : Décomposition de Cholesky [Rombaldi, p.691] :

Si A est une matrice symétrique réelle définie positive, alors il existe une unique matrice réelle B triangulaire inférieure telle que tous ses éléments diagonaux soient positifs et vérifient $A = BB^{\mathsf{T}}$.

Preuve:

Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

* Existence de la décomposition :

Comme $A \in \mathcal{S}_n^{++}(\mathbb{R})$, par le critère de Sylvester, tous ses mineurs principaux sont tous strictement positifs et donc non nuls. La décomposition LU de la matrice A existe et on a ainsi A = LU.

De plus, U s'écrit U=DR avec D une matrice diagonale dont la diagonale est égale à celle de U et R une matrice triangulaire supérieure avec des 1 sur sa diagonale. On a alors :

$$R^{\mathsf{T}}DL^{\mathsf{T}} = A^{\mathsf{T}} = A = LDR$$

Donc par unicité de la décomposition LU on a $L=R^{\mathsf{T}}$ (et $L^{\mathsf{T}}=R$) et ainsi $A=R^{\mathsf{T}}DR$. Par conséquent, A et D sont congruentes et donc elles correspondent à des formes quadratiques de même signature et puisque A est définie positive il en va de même pour D.

Les coefficients de D sont donc strictement positif (car D diagonale) et en posant $D' = \operatorname{diag}(\sqrt{d_{1,1}},...,\sqrt{d_{n,n}})$ on a $A = (LD')(LD')^{\mathsf{T}}$.

* Unicité de la décomposition :

Supposons que l'on ait $A = B_1 B_1^{\mathsf{T}} = B_2 B_1^{\mathsf{T}}$ avec B_1 et B_2 vérifiant les hypothèses du théorème.

Alors $B_2^{-1}B_1 = B_2^{\mathsf{T}}(B_1^{\mathsf{T}})^{-1}$ avec $B_2^{-1}B_1$ triangulaire inférieure et $B_2^{\mathsf{T}}(B_1^{\mathsf{T}})^{-1}$ triangulaire supérieure. Cela impose donc que $B_2^{-1}B_1 = D$ avec D une matrice diagonale.

On a alors $B_1 = B_2D$ et ainsi $A = B_1B_1^{\mathsf{T}} = B_2DD^{\mathsf{T}}B_2^{\mathsf{T}} = B_2D^2B_2^{\mathsf{T}}$. Or, on a $A = B_2B_2^{\mathsf{T}}$ par définition et donc $D^2 = I_n$ et puisque les coefficients de D sont strictement positifs on a $D = I_n$. Par conséquent, cela impose que $B_1 = B_2$.

Finalement, nous avons donc démontré l'existence et l'unicité de la décomposition de Cholesky.

II Remarques sur le développement

II.1 Utilisation des décompositions LU et de Cholesky

La décomposition LU est surtout utilisée pour résoudre les systèmes linéaire du type AX = b en résolvant à la place les systèmes triangulaires Ux = y et Ly = b.

Remarque 4: [Rombaldi, p.691]

 $\overline{*}$ Dans le cas où $A\in \operatorname{GL}_n(\mathbb{K})$ est symétrique avec tous ses déterminants principaux non nuls, dans la décomposition LU de A, on a $\det(U)=\det(A)\neq 0.$ Donc les termes diagonaux de U sont non nuls et on peut écrire U sous la forme U=DR' avec D diagonale et R' triangulaire supérieure à diagonale unité. On a alors A=LDR' et l'égalité $A=A^{\mathsf{T}}$ nous donne, compte tenu de l'unicité de la décomposition LU que $R'=L^{\mathsf{T}}.$ On a donc la décomposition unique $A=LDL^{\mathsf{T}},$ avec L triangulaire inférieure à diagonale unité et D diagonale.

* Lorsque $\mathbb{K} = \mathbb{R}$, cette décomposition nous donne un moyen de calculer la signature de A et cette matrice est définie positive si, et seulement si, tous les coefficients de D sont strictement positifs.

La décomposition de Cholesky est surtout utilisée dans la résolution de systèmes linéaires du type Ax = b avec A une matrice réelle symétrique définie positive ou bien pour simuler un vecteur gaussien de loi $\mathcal{N}_n(m,\Gamma)$ avec $\Gamma = A^{\top}A$ à partir d'un vecteur gaussien de loi $\mathcal{N}_n(0,I_n)$.

Remarque 5 : [Rombaldi, p.691]

On peut retrouver la décomposition de Cholesky en utilisant le procédé d'orthonormalisation de Gram-Schmidt.

II.2 Quelques exemples de décompositions

Trouvons les décompositions LU et de Cholesky de la matrice $A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 2 & 2 & 6 \end{pmatrix}$.

* Décomposition LU :

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 2 & 2 & 6 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$L_3 \longleftarrow L_3 - 2L_1 \qquad \qquad \begin{pmatrix} 1 & 0 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 2 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

$$L_3 \longleftarrow L_3 - L_2$$

$$\underbrace{\begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}}_{=U} \quad \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & -1 & 1 \end{pmatrix}}_{=L^{-1}}$$

On a donc:

$$U = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

* Décomposition de Cholesky :

Il suffit de reprendre la preuve de la décomposition de Cholesky en calculant en premier lieu la décomposition LU de la matrice et en posant B = LD' comme dans le théorème.

II.3 D'autres décompositions de matrices

Il existe d'autres types de décompositions de matrices dont les plus connues sont lorsque cette matrice est diagonalisable ou trigonalisable. On en donne ici de nouvelles.

II.3.1 Décomposition de Dunford multiplicative

Théorème 6 : Décomposition de Dunford [Rombaldi, p.687] : Soit $A \in GL_n(\mathbb{K})$.

Si le polynôme caractéristique de A est scindé sur \mathbb{K} , alors il existe un unique couple formé d'une matrice inversible diagonalisable D et une matrice unipotente U tel que A=UD=DU.

Preuve:

Soit $A \in GL_n(\mathbb{K})$ telle que son polynôme caractéristique est scindé sur \mathbb{K} .

Par la décomposition de Dunford additive, il existe D une matrice diagonalisable et N une matrice nilpotente telles que A=D+N et DN=ND. Or comme A est inversible, D l'est également (car elles ont les mêmes valeurs propres) et on a $A=D\left(I_n+D^{-1}N\right)$, avec D diagonalisable inversible et $U=I_n+D^{-1}N$ unipotente. En effet, puisque DN=ND on a alors $ND^{-1}=D^{-1}N$ et ainsi:

$$\forall k \in \mathbb{N}, \ (I_n - U)^k = (D^{-1}N)^k = (D^{-1})^k N^k$$

De plus, si l'on écrit A = DU une autre décomposition de Dunford, alors on a A = D + N avec $N = D(U - I_n)$ nilpotente (puisque $U - I_n$ est nilpotente et commute avec D) et qui commute avec D, ce qui nous donne la décomposition de Dunford additive et assure l'unicité de D et de $U = D^{-1}A$.

Remarque 7: [Rombaldi, p.710]

On sait que dans la décomposition de Dunford additive de A les matrices D et N sont des polynômes en A. En utilisant le théorème de Cayley-Hamilton, on obtient que la matrice D^{-1} est un polynôme en D (et donc en A) et il en résulte que $U = I_n + D^{-1}A$ est aussi un polynôme en A.

II.3.2 Générateurs de $GL_n(\mathbb{K})$ et $SL_n(\mathbb{K})$

Théorème 8 : [Rombaldi, p.688]

Toute matrice $A \in GL_n(\mathbb{K})$ s'écrit sous la forme $A = \prod_{k=1}^r P_k D_n(\lambda) \prod_{j=1}^s Q_j$, où les P_k et Q_j sont des matrices de transvections et $\lambda = \det(A)$.

Corollaire 9 : [Rombaldi, p.689]

Les groupes $\mathrm{SL}_n(\mathbb{R})$, $\mathrm{SL}_n(\mathbb{C})$ et $\mathrm{GL}_n(\mathbb{C})$ sont connexes par arcs.

Corollaire 10: [Rombaldi, p.689]

Le groupe $GL_n(\mathbb{R})$ n'est pas connexe et ses deux composantes connexes sont $GL_n^+(\mathbb{R})$ et $GL_n^-(\mathbb{R})$.

II.3.3 Décomposition QR

Théorème 11: Décomposition QR [Rombaldi, p.692]

Toute matrice $A \in GL_n(\mathbb{R})$ s'écrit de manière unique sous la forme A = QR avec Q une matrice orthogonale et R une matrice triangulaire supérieure à coefficients diagonaux strictement positifs.

Preuve:

Soit $A \in \mathrm{GL}_n(\mathbb{R})$.

La matrice $M = A^{\intercal}A$ est symétrique définie positive et donc admet une décomposition de Cholesky de la forme $M = A^{\intercal}A = BB^{\intercal}$ avec B une matrice triangulaire inférieure de termes diagonaux strictement positifs.

La matrice $Q = (A^{\mathsf{T}})^{-1} B$ est alors orthogonale. En effet :

$$Q^{\mathsf{T}}Q = B^{\mathsf{T}}A^{-1} \left(A^{\mathsf{T}}\right)^{-1}B = B^{\mathsf{T}} \left(A^{\mathsf{T}}A\right)^{-1}B = B^{\mathsf{T}} \left(BB^{\mathsf{T}}\right)^{-1}B = B^{\mathsf{T}} \left(B^{\mathsf{T}}\right)^{-1}B^{-1}B = I_n$$

Ce qui nous donne donc A = QR avec $Q = (A^{\dagger})^{-1}B$ orthogonale et $R = B^{\dagger}$ triangulaire supérieure à coefficients diagonaux strictement positifs.

Supposons que l'on ait $A=Q_1R_1=Q_2R_2$ deux décompositions QR de A. La matrice $\Delta=R_1R_2^{-1}=Q_1^{-1}Q_2=Q_1^{\mathsf{T}}Q_2$ est alors triangulaire supérieure et orthogonale et $\Delta^{-1}=\Delta^{\mathsf{T}}$ est à la fois triangulaire supérieure et inférieure, donc diagonale, et orthogonale.

Donc les termes diagonaux de Δ sont des égaux à ± 1 et puisque R_1 et R_2 ont des termes diagonaux strictement positifs, il en est de même pour Δ et donc $\Delta = I_n$ et ainsi $R_1 = R_2$ et $Q_1 = Q_2$.

Remarque 12: [Rombaldi, p.692]

Ce théorème peut aussi se démontrer en utilisant le procédé d'orthonormalisation de Gram-Schmidt, ce qui donne un moyen plus pratique que la décomposition de Cholesky pour obtenir les matrices Q et R.

Théorème 13 : Décomposition d'Iwasawa [Rombaldi, p.692] :

Toute matrice $A \in \mathrm{GL}_n(\mathbb{R})$ s'écrit de manière unique sous la forme A = QDR avec Q une matrice orthogonale, D une matrice diagonale à coefficients diagonaux strictement positifs et R une matrice triangulaire supérieure à coefficients diagonaux égaux à 1.

Preuve:

 $\overline{\text{Soit } A \in \text{GL}_n(\mathbb{R})}.$

Par la décomposition QR, on a A=QR avec Q une matrice orthogonale et R une matrice triangulaire supérieure à coefficients diagonaux strictement positifs. On peut ensuite écrire R sous la forme R=DR' avec D une matrice diagonale à coefficients diagonaux strictement positifs et R' une matrice triangulaire supérieure à diagonale unité. On a ainsi une décomposition A=QDR' et l'unicité de cette décomposition provient de l'unicité de la décomposition QR.

II.3.4 Décomposition polaire

Lemme 14 : Lemme de la racine carré [Rombaldi, p.739]

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$.

Il existe une matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $A = B^2$.

Preuve:

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$.

* Existence :

La matrice A étant symétrique et positive, elle a toutes ses valeurs propres réelles et positives et est diagonalisable dans une base orthonormée (théorème spectral). Il existe donc $P \in \mathcal{O}_n(\mathbb{R})$ et $\lambda_1, ..., \lambda_n \in \mathbb{R}^+$ tels que $A = P \operatorname{diag}(\lambda_1, ..., \lambda_n) P^{\mathsf{T}}$.

En posant la matrice $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$ et $B = P\Delta P^{\mathsf{T}}$, on a alors $B^2 = A$ et la matrice B est symétrique positive (car ses valeurs propres sont positives).

* Unicité :

Remarquons d'abord que si φ est le polynôme d'interpolation de Lagrange défini par $\varphi(\lambda_i) = \sqrt{\lambda_i}$, alors le degré de φ est égal à p-1 (avec p le nombre de valeurs propres distinctes de A) et $\varphi(A) = P\varphi(D)P^{\intercal} = P\Delta P^{\intercal} = B$ (autrement dit, B est polynomiale en A).

Soit C une autre racine carrée de A symétrique et positive.

On a alors $C^2 = A$ et donc C commute avec A et donc avec B (car B polynomiale en A). Ainsi, les matrices B et C commutent et sont symétriques, elles sont alors co-diagonalisables dans une base orthonormée. Il existe donc $Q \in O_n(\mathbb{R})$ telle que $C = Q\Gamma Q^{\mathsf{T}}$ et $B = Q\Lambda Q^{\mathsf{T}}$ avec Γ et Λ diagonales et à coefficients positifs.

De l'égalité $C^2 = A = B^2$, on tire $\Gamma^2 = \Lambda^2$ et donc $\Gamma = \Lambda$ (car Γ et Λ sont diagonales et à coefficients positifs) et ainsi B = C.

Remarque 15: [Rombaldi, p.740]

Avec les notations du théorème, on dit que B est la **racine carrée positive de** $A \in \mathcal{S}_n^+(\mathbb{R})$. Cette racine carrée positive est dans $\mathcal{S}_n^{++}(\mathbb{R})$ lorsque $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

Théorème 16: Décomposition polaire [Rombaldi, p.740]:

Toute matrice $A \in GL_n(\mathbb{R})$ peut s'écrire de manière unique sous la forme $A = \Omega S$ avec $\Omega \in O_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$.

Preuve:

Soit $A \in \mathrm{GL}_n(\mathbb{R})$.

* Existence :

La matrice $A^\intercal A$ est symétrique et définie positive (car pour tout x non nul on a $< A^\intercal A x; x> = \|Ax\|^2>0$) et donc par le lemme de la racine carrée, il existe une unique matrice $S\in \mathcal{S}_n^{++}(\mathbb{R})$ telle que $S^2=A^\intercal A$. On pose alors $\Omega=AS^{-1}$ et on a :

$$A = \Omega S \text{ et } \Omega^{\mathsf{T}} \Omega = (S^{-1})^{\mathsf{T}} (A^{\mathsf{T}} A) S^{-1} = (S^{\mathsf{T}})^{-1} S^2 S^{-1} = S^{-1} S = I_n$$

* Unicité :

Si $A = \Omega S$, alors $A^{\mathsf{T}}A = S\Omega^{\mathsf{T}}\Omega S = S^2$, avec S la racine carrée positive de la matrice symétrique définie positive $A^{\mathsf{T}}A$. La matrice Ω est alors donnée par $\Omega = AS^{-1}$ (A inversible entraı̂ne S inversible).

Finalement, on a donc démontré la décomposition polaire.

De la densité de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$, on peut en déduire une généralisation à $\mathcal{M}_n(\mathbb{R})$ du théorème précédent.

Théorème 17: [Rombaldi, p.741]

Toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ peut s'écrire sous la forme $A = \Omega S$ avec $\Omega \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^+(\mathbb{R})$.

Preuve:

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

Par densité de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$, il existe une suite $(A_k)_{k\in\mathbb{N}}$ à valeurs dans $GL_n(\mathbb{R})$ telle que $\lim_{k\to+\infty} A_k = A$. Par le théorème de la décomposition polaire, on a pour tout $k\in\mathbb{N}$ que $A_k = \Omega_k S_k$, avec $\Omega_k\in O_n(\mathbb{R})$ et $S_k\in \mathcal{S}_n^{++}(\mathbb{R})$.

Or la suite $(\Omega_k)_{k\in\mathbb{N}}$ est à valeurs dans le compact $\mathcal{O}_n(\mathbb{R})$, donc on peut en extraire une sous-suite $(\Omega_{\varphi(k)})_{k\in\mathbb{N}}$ qui converge vers une matrice $\Omega\in\mathcal{O}_n(\mathbb{R})$. De la relation $S_k=\Omega_k^{-1}A_k=\Omega^{\mathsf{T}}A$ et de la continuité du produit matriciel, on en déduit que la sous-suite $(S_{\varphi(k)})_{k\in\mathbb{N}}$ est également convergente vers $S\in\mathcal{S}_n^+(\mathbb{R})$ et on a donc $A=\Omega S$.

Remarque 18: [Rombaldi, p.741]

Si A est de rang r < n, alors la décomposition précédente n'est pas unique! En effet, on peut diagonaliser la matrice symétrique positive S dans une base orthonormée $(e_i)_{i \in [\![1:n]\!]}$ avec $Se_i = \lambda_i e_i$ avec $\lambda_i = 0$ pour $i \in [\![1:n-r]\!]$ et $\lambda_i > 0$ sinon (si A n'est pas inversible, alors il en est de même pour S et 0 est valeur propre de S). Les Ωe_i sont alors uniquement déterminés pour $i \in [\![n-r+1;n]\!]$ mais il n'y a pas unicité pour $i \in [\![1:n-r]\!]$.

Théorème 19 : [Rombaldi, p.741]

L'application:

$$\Psi: \left| \begin{array}{ccc} O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) & \longrightarrow & \mathrm{GL}_n(\mathbb{R}) \\ (\Omega, S) & \longmapsto & \Omega S \end{array} \right|$$

est un homéomorphisme.

Preuve:

- * On sait déjà que toute matrice $A \in GL_n(\mathbb{R})$ peut s'écrire de manière unique sous la forme $A = \Omega S$ avec $\Omega \in O_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$. L'application Ψ est alors une bijection de $O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R})$ sur $GL_n(\mathbb{R})$.
- * L'application Ψ est continue car ses composantes sont des fonctions polynomiales des coefficients de Ω et de S.
- * Montrons que Ψ^{-1} est continue :

Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices dans $\mathrm{GL}_n(\mathbb{R})$ qui converge vers A.

Pour tout $k \in \mathbb{N}$, on note $\Psi^{-1}(A_k) = (\Omega_k, S_k)$ et $\Psi^{-1}(A) = (\Omega, S)$. La suite $(\Omega_k)_{k \in \mathbb{N}}$ est à valeurs dans le compact $O_n(\mathbb{R})$, donc on peut en extraire une sous-suite $(\Omega_{\varphi(k)})_{k \in \mathbb{N}}$ qui converge vers une matrice $\Omega' \in O_n(\mathbb{R})$. De la relation $S_k = \Omega^{\mathsf{T}}A$ et de la continuité du produit matriciel, on en déduit que la sous-suite $(S_{\varphi(k)})_{k \in \mathbb{N}}$ est également convergente vers $S' = \Omega'^{\mathsf{T}}A$.

La matrice S' est symétrique positive (en tant que limite d'une suite de matrices symétriques positives) et elle est définie puisque inversible. On a alors la décomposition polaire $A=\Omega'S'$ et par unicité on a en particulier que $\Omega'=\Omega$. Ainsi, la suite $(\Omega_k)_{k\in\mathbb{N}}$ admet une unique valeur d'adhérence dans le compact $O_n(\mathbb{R})$ et ainsi elle converge vers Ω .

Par conséquent, la suite $(S_k)_{k\in\mathbb{N}}=(\Omega_k^\intercal A_k)$ converge vers $\Omega^\intercal A=S$. C'est-à-dire que la suite $((\Omega_k,S_k))_{k\in\mathbb{N}}=\left(\Psi^{-1}(A_k)\right)_{k\in\mathbb{N}}$ converge vers $(\Omega,S)=\Psi^{-1}(A)$ et ainsi Ψ^{-1} est continue.

Finalement, l'application Ψ est bien un homéomorphisme.

II.4 Recasages

Recasages : 154 - 157 - 162 - 170 - 171.

III Bibliographie

— Jean-Étienne Rombaldi, $\underline{\mathit{Math\'ematiques}\ pour\ l'agr\'egation},\ \mathit{Alg\`ebre}\ et\ g\'eom\'etrie}.$